Exact Solvability in Random Matrices and Data Sciences

随机矩阵和数据科学中的精确可解性

基本信息

  • 批准号:
    2152588
  • 负责人:
  • 金额:
    $ 25.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The project focuses on random matrices - rectangular arrays of random numbers. While the primary focus is on theoretical properties of such matrices, the questions are motivated by applications in other sciences: economics, statistics, and physics. In data sciences, rectangular arrays appear whenever the observations are naturally arranged in two dimensions, for instance, in time and space. In quantum mechanics, matrices and related operators appear in modelling of a physical system. When the amount of available information about such a system is limited, a proper modelling is by taking the matrix to be random. This project provides research training opportunities for graduate students.Random matrices and their eigenvalues play a central role in many research areas, including high-energy physics, growth models, number theory, and high-dimensional statistics. The project revolves around exactly solvable or integrable families of random matrices, for which the eigenvalues are accessible through explicit formulas, actions of differential operations, orthogonal polynomials, and other essentially algebraic techniques. The goal of this project is three-fold: to search for these families, develop delicate asymptotic results about them (which usually go far beyond theorems available for generic systems), and use them for obtaining asymptotic predictions for much wider classes of random matrices and related objects of applied interest. The central objects gluing together different parts of the project are beta-ensembles, which are N-dimensional distributions uniting and generalizing the laws of eigenvalues of various random matrices. While in classical contexts the parameter beta takes values 1, 2, or 4, depending on whether the matrices under consideration are real, complex, or are quaternion matrices, this project emphasize a point of view in which beta is allowed to take arbitrary positive real values and should be interpreted as the inverse temperature in the terminology of statistical mechanics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是随机矩阵-随机数的矩形阵列。虽然主要关注的是这些矩阵的理论性质,但这些问题的动机是在其他科学中的应用:经济学,统计学和物理学。在数据科学中,每当观察结果自然地排列在两个维度上(例如,时间和空间)时,就会出现矩形阵列。在量子力学中,矩阵和相关算子出现在物理系统的建模中。当关于这种系统的可用信息量有限时,适当的建模是通过将矩阵随机化。随机矩阵及其特征值在高能物理、增长模型、数论和高维统计等许多研究领域中发挥着核心作用。该项目围绕着随机矩阵的精确可解或可积族,其特征值可以通过显式公式,微分运算,正交多项式和其他基本代数技术来获得。这个项目的目标是三重的:寻找这些家庭,发展微妙的渐近结果(这通常远远超出了一般系统的定理),并使用它们获得渐近预测更广泛的类随机矩阵和相关的应用对象的兴趣。将项目的不同部分粘合在一起的中心对象是β集合,它是N维分布,统一和推广了各种随机矩阵的特征值定律。虽然在经典的上下文中,参数β取1、2或4的值,这取决于所考虑的矩阵是真实的、复数还是四元数矩阵,该项目强调一种观点,即允许β取任意正的真实的值,并且应该被解释为统计力学术语中的逆温度。该奖项反映了NSF的法定使命,并且已通过使用基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vadim Gorin其他文献

Gaussian asymptotics of discrete $\beta $ -ensembles
  • DOI:
    10.1007/s10240-016-0085-5
  • 发表时间:
    2016-06-14
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Alexei Borodin;Vadim Gorin;Alice Guionnet
  • 通讯作者:
    Alice Guionnet
Block characters of the symmetric groups
  • DOI:
    10.1007/s10801-012-0394-9
  • 发表时间:
    2012-08-29
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Alexander Gnedin;Vadim Gorin;Sergei Kerov
  • 通讯作者:
    Sergei Kerov
Interlacing adjacent levels of $$\beta $$ –Jacobi corners processes
From Alternating Sign Matrices to the Gaussian Unitary Ensemble
Heat transfer during film condensation inside plain tubes. Review of experimental research
  • DOI:
    10.1007/s00231-019-02744-5
  • 发表时间:
    2019-10-30
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Volodymyr Rifert;Volodymyr Sereda;Vadim Gorin;Peter Barabash;Andrii Solomakha
  • 通讯作者:
    Andrii Solomakha

Vadim Gorin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vadim Gorin', 18)}}的其他基金

Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
  • 批准号:
    2246449
  • 财政年份:
    2022
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Exactly Solvable Stochastic Systems: Connections and Universality
精确可解的随机系统:联系和普遍性
  • 批准号:
    1855458
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Exactly Solvable Stochastic Systems: Connections and Universality
精确可解的随机系统:联系和普遍性
  • 批准号:
    1949820
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant
Integrable probability and random matrices: 2d structures, limit theorems
可积概率和随机矩阵:二维结构、极限定理
  • 批准号:
    1407562
  • 财政年份:
    2014
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Standard Grant

相似海外基金

Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
  • 批准号:
    EP/Y033078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Research Grant
Quasi self-similar transformation for a semilinear heat equation and its application to the solvability
半线性热方程的拟自相似变换及其在可解性中的应用
  • 批准号:
    23K03179
  • 财政年份:
    2023
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
  • 批准号:
    2246449
  • 财政年份:
    2022
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Continuing Grant
Solvability and universality in stochastic processes
随机过程的可解性和普适性
  • 批准号:
    FT200100981
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    ARC Future Fellowships
Roots of Polynomials over Infinite Rings with Applications to Cryptography: Investigating Solvability of and Approximation Tools for Polynomial Roots and the Error Bounds of Approximations Used in Rep
无限环上多项式的根及其在密码学中的应用:研究多项式根的可解性和近似工具以及表示中使用的近似的误差界
  • 批准号:
    544226-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Roots of Polynomials over Infinite Rings with Applications to Cryptography: Investigating Solvability of and Approximation Tools for Polynomial Roots and the Error Bounds of Approximations Used in Rep
无限环上多项式的根及其在密码学中的应用:研究多项式根的可解性和近似工具以及表示中使用的近似的误差界
  • 批准号:
    544226-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Roots of Polynomials over Infinite Rings with Applications to Cryptography: Investigating Solvability of and Approximation Tools for Polynomial Roots and the Error Bounds of Approximations Used in Rep
无限环上多项式的根及其在密码学中的应用:研究多项式根的可解性和近似工具以及表示中使用的近似的误差界
  • 批准号:
    544226-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Solvability and solutions' analysis of nonlinear elliptic equations from the viewpoint of eigenvalue problems
从特征值问题的角度看非线性椭圆方程的可解性及解分析
  • 批准号:
    19K03591
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solvability for a nonlinear heat equation with singular initial data
具有奇异初始数据的非线性热方程的可解性
  • 批准号:
    19K14569
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A proposal and analysis of solvability of new low-functioning autonomous mobile robot systems
新型低功能自主移动机器人系统可解性的提出和分析
  • 批准号:
    19K11823
  • 财政年份:
    2019
  • 资助金额:
    $ 25.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了