Advances in Scalable Monte Carlo Algorithms for Bayesian Statistics
贝叶斯统计可扩展蒙特卡罗算法的进展
基本信息
- 批准号:1407622
- 负责人:
- 金额:$ 29.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Statistical analysis of large datasets and complex models is in tremendous demand, with applications throughout the natural and social sciences, engineering, business, and biomedicine. A major limitation in meeting this demand lies in current computational algorithms, which fail to scale adequately to large problems and data sets. At the same time, advances in computer processor speeds have slowed dramatically, prompting a shift in the computer hardware industry towards parallelization. As a result, the demands on Bayesian computational algorithms are increasing rapidly as the platforms underlying them are changing. This work explores several promising new directions for producing highly efficient and scalable algorithms, and corresponding software tools, suitable for general-purpose Bayesian calculations.The work involves new directions in Bayesian computation, including (1) true parallelization of general-purpose Markov chain Monte Carlo samplers, a class of algorithms traditionally viewed as "inherently serial," (2) algorithmic and theoretical advances in "static data" particle-based sequential Monte Carlo samplers which are highly parallelizable but currently fail on many complex high-dimensional posterior distributions, and (3) new tools for empirical monitoring of convergence of Monte Carlo samplers specifically designed for complex distributions and high-dimensional problem domains. All facets of the work are directly motivated by applications of Bayesian statistics in chemical kinetics, structural bioinformatics, and systems biology. This work also has immediate applicability to problems in broader areas of statistical physics, computer science, and molecular simulation.
大型数据集和复杂模型的统计分析需求巨大,其应用遍及自然科学和社会科学、工程、商业和生物医学。 在满足这一需求的主要限制在于当前的计算算法,它不能充分扩展到大的问题和数据集。 与此同时,计算机处理器速度的进步已经大幅放缓,促使计算机硬件行业转向并行化。 因此,对贝叶斯计算算法的需求正在迅速增加,因为它们背后的平台正在发生变化。 本文探讨了几个有前途的新方向,以产生高效和可扩展的算法,以及相应的软件工具,适用于通用贝叶斯计算。这项工作涉及贝叶斯计算的新方向,包括(1)通用马尔可夫链蒙特卡罗采样器的真正并行化,一类传统上被视为“固有串行”的算法,(2)“静态数据”基于粒子的顺序蒙特卡罗采样器的算法和理论进展,这些采样器是高度可并行的,但目前在许多复杂的高维后验分布上失败,和(3)新的工具,经验监测的收敛性的Monte Carlo采样器专门设计的复杂分布和高维问题域。 工作的所有方面都直接受到贝叶斯统计在化学动力学,结构生物信息学和系统生物学中的应用的启发。 这项工作也有直接适用于统计物理,计算机科学和分子模拟等更广泛领域的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Schmidler其他文献
Scott Schmidler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Schmidler', 18)}}的其他基金
Bayesian Analysis of Shapes and Curves with Applications in Structural Bioinformatics
形状和曲线的贝叶斯分析及其在结构生物信息学中的应用
- 批准号:
0605141 - 财政年份:2006
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Statistical Models of Biopolymer Sequence and Folding
生物聚合物序列和折叠的统计模型
- 批准号:
0204690 - 财政年份:2002
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
- 批准号:
MR/Y011686/1 - 财政年份:2025
- 资助金额:
$ 29.76万 - 项目类别:
Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
- 批准号:
2335583 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: Building a Scalable and Polymorphic Cyberinfrastructure for Diverse Research and Education Needs at Illinois State University
CC* 网络基础设施:为伊利诺伊州立大学的多样化研究和教育需求构建可扩展和多态的网络基础设施
- 批准号:
2346712 - 财政年份:2024
- 资助金额:
$ 29.76万 - 项目类别:
Standard Grant