Advanced Statistical Tools for Ultra-High Dimensional Functional Data with Spatial-Temporal Correlation

具有时空相关性的超高维函数数据的高级统计工具

基本信息

  • 批准号:
    1407655
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

This project concerns developing innovative advanced statistical tools for the analysis of ultra-high dimensional functional data with spatial-temporal correlation. The primary motivating application is neuroimaging analysis, relevant to the BRAIN Initiative. (However, the developed methods and theory are applicable to a much broader range of fields involving spatial-temporal modeling.) The research program has a strong multidisciplinary collaborative component, with key team members drawn from biostatistics/statistics, computer science, psychiatry, radiology, and psychology. The tools and software under development can have immediate impacts in clinical research, and have wider applications in medical studies of HIV/AIDS, major neuropsychiatric and neurodegenerative disorders, normal brain development, and cancer, among many others. The problems addressed are also of broad interest to general society, since they relate to pressing issues such as health care policies and social security planning. With modern imaging techniques, many large-scale studies have been or are being widely conducted to collect a wealthy set of functional data and clinical data. Functional data share four common and important features: (i) extremely high dimensional, (ii) piecewise smooth, (iii) temporally, and (iv) spatially dependent. The analysis of such data and integration of them with clinical data have been hindered by lack of effective statistical tools and theory, underscoring the great need for methodological and theoretical development from a statistical perspective. The project addresses challenges from three broader perspectives in both time and frequency domains. The first perspective develops spatial-temporal models for adaptive function estimation. The models can effectively extract informative markers from noisy functional data. The second perspective concerns reduced rank models for groups of functional data with spatial-temporal correlation. In addition, the third perspective develops advanced functional mixed effects models for modeling varying association function between repeated functional responses and a set of covariates of interest, while accounting for complex spatial-temporal correlation.
该项目涉及开发创新的先进统计工具,用于分析具有时空相关性的超高维功能数据。主要的激励应用是神经成像分析,与BRAIN Initiative相关。(然而,开发的方法和理论适用于涉及时空建模的更广泛的领域。该研究计划具有强大的多学科合作组成部分,主要团队成员来自生物统计学/统计学,计算机科学,精神病学,放射学和心理学。正在开发的工具和软件可以对临床研究产生直接影响,并在艾滋病毒/艾滋病、主要神经精神和神经变性疾病、正常大脑发育和癌症等医学研究中有更广泛的应用。所讨论的问题也引起一般社会的广泛兴趣,因为它们涉及到诸如保健政策和社会保障规划等紧迫问题。随着现代影像学技术的发展,许多大规模的研究已经或正在广泛进行,以收集丰富的功能数据和临床数据。函数数据共有四个共同的重要特征:(i)极高维,(ii)分段光滑,(iii)时间,(iv)空间相关。由于缺乏有效的统计工具和理论,对这些数据的分析以及将其与临床数据相结合的工作受到阻碍,这突出表明迫切需要从统计学的角度发展方法和理论。 该项目从时域和频域的三个更广泛的角度应对挑战。第一个视角开发了用于自适应函数估计的时空模型。该模型可以有效地从噪声功能数据中提取信息标记。第二个角度关注的功能数据组的降秩模型与时空相关性。此外,第三个角度开发先进的功能混合效应模型,用于模拟重复功能反应和一组相关协变量之间的不同关联函数,同时考虑复杂的时空相关性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hongtu Zhu其他文献

A functional nonlinear mixed effects modeling framework for longitudinal functional responses
纵向功能响应的功能非线性混合效应建模框架
  • DOI:
    10.1214/24-ejs2226
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Linglong Kong;Xinchao Luo;Jinhan Xie;Lixing Zhu;Hongtu Zhu
  • 通讯作者:
    Hongtu Zhu
LSTGEE: longitudinal analysis of neuroimaging data
LSTGEE:神经影像数据的纵向分析
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yimei Li;Hongtu Zhu;Yasheng Chen;H. An;J. Gilmore;Weili Lin;D. Shen
  • 通讯作者:
    D. Shen
Surface functional models
  • DOI:
    https://doi.org/10.1016/j.jmva.2020.104664
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    谌自奇;Jianhua Hu;Hongtu Zhu
  • 通讯作者:
    Hongtu Zhu
RADTI: regression analyses of diffusion tensor images
RADTI:扩散张量图像的回归分析
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yimei Li;Hongtu Zhu;Yasheng Chen;J. Ibrahim;H. An;Weili Lin;C. Hall;D. Shen
  • 通讯作者:
    D. Shen
FLCRM: Functional Linear Cox Regression Models
FLCRM:函数线性 Cox 回归模型
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dehan Kong;J. Ibrahim;Eunjee Lee;Hongtu Zhu
  • 通讯作者:
    Hongtu Zhu

Hongtu Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hongtu Zhu', 18)}}的其他基金

Advanced Statistical Tools for Ultra-High Dimensional Functional Data with Spatial-Temporal Correlation
具有时空相关性的超高维函数数据的高级统计工具
  • 批准号:
    1743054
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Diagnosing Statistical Models for Longitudinal and Family Data
诊断纵向和家庭数据的统计模型
  • 批准号:
    0643663
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Diagnosing Statistical Models for Longitudinal and Family Data
诊断纵向和家庭数据的统计模型
  • 批准号:
    0550988
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Integrated experimental and statistical tools for ultra-high-throughput spatial transcriptomics
用于超高通量空间转录组学的集成实验和统计工具
  • 批准号:
    10727130
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Developing Statistical Tools for Data integration and Data Fusion for Finite Population Inference
开发用于有限总体推理的数据集成和数据融合的统计工具
  • 批准号:
    2242820
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
  • 批准号:
    10658688
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Advancing the design, analysis, and interpretation of acute respiratory distress syndrome trials using modern statistical tools
使用现代统计工具推进急性呼吸窘迫综合征试验的设计、分析和解释
  • 批准号:
    10633978
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Statistical Methods and Computational Tools for Marine Animal Movement, Distribution and Population Size
海洋动物运动、分布和种群规模的统计方法和计算工具
  • 批准号:
    RGPIN-2019-05688
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Developing Statistical Tools and Visualization Methods for Understanding Heterogeneity in Distributed Networks: Applications to COVID-19 and Diabetes
开发统计工具和可视化方法来理解分布式网络中的异质性:在 COVID-19 和糖尿病中的应用
  • 批准号:
    468555
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Operating Grants
Statistical Models and Diagnostics Tools for Spatially Correlated Skewed and Heterogeneous Data
空间相关倾斜和异构数据的统计模型和诊断工具
  • 批准号:
    RGPIN-2019-07212
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and Computational Tools for Analyzing High-Dimensional Heterogeneous Data
用于分析高维异构数据的统计和计算工具
  • 批准号:
    2210907
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistical machine learning tools for understanding neural ensemble representations and dynamics
用于理解神经集成表示和动态的统计机器学习工具
  • 批准号:
    10510107
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了