Optical Cavity Enhanced Nanoscale Gas Chromatography
光腔增强纳米气相色谱
基本信息
- 批准号:1407947
- 负责人:
- 金额:$ 40.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Title: Optical Cavity Enhanced Nanoscale Gas ChromatographyProposal Goal: The research aims to pioneer a study on the development of an ultra-compact nanoscale gas chromatography platform with integrated on-column photonic crystal cavity-enhanced Fano resonance nanosensor arrays to achieve ultrafast and highly sensitive gas analysis.Nontechnical Abstract:Rapid and in-situ chemical vapor analysis provides vital information in many applications such as environmental monitoring, healthcare, industrial and workplace safety, and defense and national security. Unfortunately, most gas sensors lack the detection specificity, makes it challenging to analyze real-world samples that usually contain tens to hundreds of volatile organic compounds. Although recent advancement in micro-gas chromatography (GC) demonstrates great potential in the development of powerful portable gas analysis devices, it still remains a grand challenge to achieve ultrafast separation and detection while maintaining adequate separation resolution and small footprint for effective gas analysis. This research aims to develop a nanoscale gas chromatography device that provides unprecedented gas analysis speed, separation capability, sensitivity, ultra-compact size, and system scalability. The success of this research will lead to the development of wearable and personalized gas sensors that can be easily accepted and accessible by the general public for various applications. Scaling from micro-GC to nano-GC presents a range of scientific and engineering challenges, including the column design, polymer coating, mismatch between the nanoscale column and the micro-scale detection/sensing scheme, high spectrally and spatially resolved optical sensors, and system integration architectures. In addition to technical advances, fundamental study of gas separation mechanisms and processes in a nanofluidic channel provides unique insight into the molecular interaction and gas dynamics within nano-sized confinement, which will not only be important for discovery of new sensing and separation mechanisms, but can also be extended to many seemingly unrelated areas (such as gas exchange processes in the lung). The knowledge generated through the proposed project will be instrumental to the development of new techniques and tools to push a plethora of engineering fields to a new frontier.The proposed project offers extensive interdisciplinary education and training opportunities for undergraduate and graduate students. The research outcomes will also be integrated into the outreach activities with local K-12 schools and communities to attract students to STEM careers. Technical Abstract:The objective of this project is to pioneer a study on the development of a nano-GC platform with integrated on-column photonic crystal cavity-enhanced Fano resonance nanosensor arrays to achieve portable, quantitative, ultra-fast, and high separation resolution volatile organic compounds analysis in complex gas mixtures. In the proposed work, nanofluidic channels are directly fabricated and integrated with the coupled photonic crystal slab Fano resonance filters, offering a unique capability in studying the gas separation in the nanoscale confined environment. The specific research tasks include: (1) Fundamental study of gas separation mechanisms and processes in a nanofluidic channel; (2) Development of the photonic crystal cavity enhanced sensor array; (3) On-chip integration of nano-GC channels with photonic crystal sensor arrays; and (4) Prototyping of a nano-GC system for ultra-fast analysis of a panel of volatile organic compounds in complex gas mixtures.
提案标题:Optical Cavity Enhanced Nanoscale Gas ChromatographyProposal Goal:The Research aims to pioneer a study on the development of a ultra-compact nanoscale gas chromatography platform with integrated on column photonic crystal cavity-enhanced Fano resonance nanosensor arrays to achieve ultrafast and highly sensitive gas analysis.Nontechnical摘要:快速和原位化学气相分析在许多应用中提供重要信息,如环境监测,医疗保健,工业和工作场所安全,国防和国家安全.不幸的是,大多数气体传感器缺乏检测特异性,这使得分析通常含有数十至数百种挥发性有机化合物的真实样品具有挑战性。尽管微型气相色谱(GC)的最新进展在开发功能强大的便携式气体分析设备方面展示了巨大的潜力,但实现超快分离和检测,同时保持足够的分离分辨率和用于有效气体分析的小尺寸仍然是一个巨大的挑战。该研究旨在开发一种纳米级气相色谱设备,提供前所未有的气体分析速度,分离能力,灵敏度,超紧凑尺寸和系统可扩展性。这项研究的成功将导致可穿戴和个性化的气体传感器的开发,这些传感器可以很容易地被公众接受和访问,用于各种应用。从微型GC到纳米GC的扩展提出了一系列科学和工程挑战,包括柱设计、聚合物涂层、纳米级柱和微米级检测/传感方案之间的不匹配、高光谱和空间分辨率的光学传感器以及系统集成架构。除了技术进步,纳米流体通道中气体分离机制和过程的基础研究提供了对纳米尺寸限制内分子相互作用和气体动力学的独特见解,这不仅对发现新的传感和分离机制很重要,而且还可以扩展到许多看似无关的领域(例如肺部的气体交换过程)。通过拟议的项目产生的知识将有助于新技术和工具的开发,将过多的工程领域推向新的前沿。拟议的项目为本科生和研究生提供了广泛的跨学科教育和培训机会。研究成果也将纳入与当地K-12学校和社区的外联活动,以吸引学生从事STEM职业。技术摘要:本项目的目标是开创一个研究开发的纳米气相色谱平台与集成的柱上光子晶体腔增强Fano共振纳米传感器阵列,以实现便携式,定量,超快速,高分离分辨率的挥发性有机化合物分析在复杂的气体混合物。在所提出的工作中,纳米流体通道直接制造和集成的耦合光子晶体板Fano谐振滤波器,提供了一个独特的能力,在研究气体分离的纳米级密闭环境。具体研究任务包括:(1)纳米流体通道中气体分离机理和过程的基础研究;(2)光子晶体腔增强传感器阵列的开发;(3)纳米GC通道与光子晶体传感器阵列的芯片集成;以及(4)纳米GC系统的原型,用于复杂气体混合物中挥发性有机化合物的超快速分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuze (Alice) Sun其他文献
Yuze (Alice) Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuze (Alice) Sun', 18)}}的其他基金
PFI-RP: Portable integrated photonic micro-gas chromatography system for rapid gas analysis
PFI-RP:用于快速气体分析的便携式集成光子微气相色谱系统
- 批准号:
2213975 - 财政年份:2022
- 资助金额:
$ 40.04万 - 项目类别:
Standard Grant
CAREER: Optofluidic Lasers at the Liquid-Liquid Interface: A Versatile Biosensing Platform
职业:液-液界面的光流控激光器:多功能生物传感平台
- 批准号:
1554013 - 财政年份:2016
- 资助金额:
$ 40.04万 - 项目类别:
Standard Grant
相似海外基金
Development of coherent Raman spectroscopy based on cavity-enhanced phase-matched nonlinear optics
基于腔增强相位匹配非线性光学的相干拉曼光谱研究进展
- 批准号:
23H01987 - 财政年份:2023
- 资助金额:
$ 40.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Ultrafast Cavity-Enhanced Two-Dimensional Spectroscopy for Coherent Control Experimental Design
用于相干控制实验设计的超快腔增强二维光谱学的发展
- 批准号:
2207784 - 财政年份:2022
- 资助金额:
$ 40.04万 - 项目类别:
Standard Grant
Development of a real-time trace-gas analysis method based on cavity-enhanced Raman spectroscopy
基于腔增强拉曼光谱的实时痕量气体分析方法的开发
- 批准号:
21K18983 - 财政年份:2021
- 资助金额:
$ 40.04万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Ambient Level Hydroxyl Radical (OH) Detection Using Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS) in an Open-Path Configuration
在开放路径配置中使用宽带腔增强吸收光谱 (BBCEAS) 进行环境水平羟基自由基 (OH) 检测
- 批准号:
2114655 - 财政年份:2021
- 资助金额:
$ 40.04万 - 项目类别:
Continuing Grant
Tip-Enhanced Molecular and Quantum Cavity Nano-Optics
尖端增强分子和量子腔纳米光学
- 批准号:
2108009 - 财政年份:2021
- 资助金额:
$ 40.04万 - 项目类别:
Standard Grant
Development of Cavity-Enhanced Single-Molecule Electronic and Vibrational Spectroscopy for Mechanistic Studies of Biomolecules
用于生物分子机理研究的腔增强单分子电子和振动光谱学的发展
- 批准号:
10470395 - 财政年份:2020
- 资助金额:
$ 40.04万 - 项目类别:
Model Theory of Enhanced Light-Matter Interaction in a PT-Symmetric Hybrid Optical Cavity
PT对称混合光腔中增强光-物质相互作用的模型理论
- 批准号:
1954393 - 财政年份:2020
- 资助金额:
$ 40.04万 - 项目类别:
Standard Grant
Development of Cavity-Enhanced Single-Molecule Electronic and Vibrational Spectroscopy for Mechanistic Studies of Biomolecules
用于生物分子机理研究的腔增强单分子电子和振动光谱学的发展
- 批准号:
10251006 - 财政年份:2020
- 资助金额:
$ 40.04万 - 项目类别:
Solid-state cavity enhanced single photon emitters using two-dimensional materials
使用二维材料的固态腔增强单光子发射器
- 批准号:
552658-2020 - 财政年份:2020
- 资助金额:
$ 40.04万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Controlling Nonclassical Atomic Spin Ensembles via Cavity-Enhanced Polarization Measurements
通过腔增强偏振测量控制非经典原子自旋系综
- 批准号:
2011582 - 财政年份:2020
- 资助金额:
$ 40.04万 - 项目类别:
Standard Grant