Development of Ultrafast Cavity-Enhanced Two-Dimensional Spectroscopy for Coherent Control Experimental Design
用于相干控制实验设计的超快腔增强二维光谱学的发展
基本信息
- 批准号:2207784
- 负责人:
- 金额:$ 52.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With support from the programs in Atomic, Molecular and Optical Experimental Physics (AMO-E), Chemical Structure, Dynamics and Mechanisms-A (CSDM-A) and Integrative Activities in Physics, Prof. Melanie Reber at the University of Georgia is increasing the sensitivity of a laser technique for studying and controlling molecules. The idea of using light to selectively control the breaking of a bond and to control the outcome of a chemical reaction is a long-standing dream. It could potentially provide new avenues to synthesize molecules or even create new molecules. In order to use light for a controlled synthesis, ideally one would have detailed knowledge about the molecular electronic, vibrational, and rotational energy landscapes and how they are coupled. One challenge with describing the molecular system for designing control sequences is if the molecule has complicated dynamics that are not well described by current computational chemistry or spectroscopic methods. This project will develop a spectroscopy-driven approach to designing coherent control experiments, specifically improving the sensitivity and resolution of two-dimensional spectroscopy through the use of optical enhancement cavities and frequency comb lasers. Two-dimensional spectroscopy provides information about the structure and dynamics of molecules, but currently can only be used on condensed-phase samples. Over the three years of the project, the research team will develop the capability to perform multidimensional spectroscopy on dilute species, enabling studies of small, isolated molecules without the effects of solvent, for example. The students working on this highly-technical project will gain valuable interdisciplinary training in electronics, optics, lasers, vacuum technology, programming, data analysis, CAD design, and quantum mechanics. This training will set the students up for successful careers in technical fields in industry and academia. In addition, the PI will start a yearly workshop aimed at students from local colleges, including several HBCU’s, to learn about chemistry and physics graduate school and the application process.The research team will develop a high-resolution and ultrafast two-dimensional spectrometer for characterization of vibrational and electronic coupling in molecules for a detailed molecular approach to designing coherent control experiments. The main goal of the project is to build the cavity-enhanced two-dimensional spectrometer with a visible pump and tunable visible probe with a dual comb detection scheme. They will use frequency comb lasers and techniques, including dual-comb detection, to increase the sensitivity and enable high-resolution spectral detection. The cavity-enhancement will improve the sensitivity of two-dimensional spectroscopy, such that dilute species in molecular beams can be studied with two-dimensional spectroscopy for the first time. This instrument will then provide new data on the structure and dynamics of gas phase molecules with the potential for ultrafast time resolution and high-precision frequency resolution to be used for coherent control experimental design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在原子,分子和光学实验物理学(AMO-E),化学结构,动力学和机理-A(CSDM-A)和物理学综合活动计划的支持下,格鲁吉亚大学的Melanie Reber教授正在提高激光技术研究和控制分子的灵敏度。 利用光来选择性地控制键的断裂和控制化学反应的结果的想法是一个长期的梦想。它可能为合成分子甚至创造新分子提供新的途径。为了使用光进行受控合成,理想情况下,人们应该详细了解分子的电子,振动和旋转能量景观以及它们如何耦合。描述用于设计控制序列的分子系统的一个挑战是分子是否具有通过当前计算化学或光谱方法不能很好描述的复杂动力学。该项目将开发一种光谱驱动的方法来设计相干控制实验,特别是通过使用光学增强腔和频率梳状激光器来提高二维光谱的灵敏度和分辨率。二维光谱提供了分子结构和动力学的信息,但目前只能用于凝聚相样品。在该项目的三年时间里,研究团队将开发对稀释物质进行多维光谱分析的能力,例如,可以在没有溶剂影响的情况下研究小的孤立分子。从事这个高技术项目的学生将获得电子,光学,激光,真空技术,编程,数据分析,CAD设计和量子力学方面的宝贵跨学科培训。这项培训将使学生在工业和学术界的技术领域取得成功。此外,PI还将每年举办一次研讨会,面向包括HBCU在内的当地大学的学生,让他们了解化学和物理研究生院以及申请流程。研究团队将开发一种高分辨率和超快的二维光谱仪,用于表征分子中的振动和电子耦合,以详细的分子方法设计相干控制实验。本项目的主要目标是建立一个具有可见光抽运和可调谐可见光探针的腔增强二维光谱仪,采用双梳状探测方案。他们将使用频率梳激光器和技术,包括双梳检测,以提高灵敏度并实现高分辨率光谱检测。腔增强将提高二维光谱学的灵敏度,从而使分子束中的稀组分首次可以用二维光谱学来研究。该仪器将提供气相分子结构和动力学的新数据,并具有用于相干控制实验设计的超快时间分辨率和高精度频率分辨率的潜力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melanie Reber其他文献
Arbeitsfähig bis ins Rentenalter
出租人的工作
- DOI:
10.1515/arbeit-2019-0010 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Melanie Reber;A. Jansen - 通讯作者:
A. Jansen
Melanie Reber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melanie Reber', 18)}}的其他基金
CAREER: Detecting Quantum Signatures in Nonadiabatic Molecular Dynamics
职业:检测非绝热分子动力学中的量子特征
- 批准号:
2340180 - 财政年份:2024
- 资助金额:
$ 52.57万 - 项目类别:
Continuing Grant
相似国自然基金
基于Ultrafast-VPCR技术的半夏药材及其成药快速基因检测体系的建立以及应用
- 批准号:81973434
- 批准年份:2019
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Integrated Lithium Niobate Femtosecond Mode-Locked Lasers and Ultrafast Photonic Systems
职业:集成铌酸锂飞秒锁模激光器和超快光子系统
- 批准号:
2338798 - 财政年份:2024
- 资助金额:
$ 52.57万 - 项目类别:
Continuing Grant
CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
- 批准号:
2340570 - 财政年份:2024
- 资助金额:
$ 52.57万 - 项目类别:
Continuing Grant
Ultrafast tracking of physiological processes in the human eye
超快速跟踪人眼的生理过程
- 批准号:
DP240103352 - 财政年份:2024
- 资助金额:
$ 52.57万 - 项目类别:
Discovery Projects
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
- 批准号:
MR/X034615/1 - 财政年份:2024
- 资助金额:
$ 52.57万 - 项目类别:
Fellowship
Ultrafast Infrared Spectroscopy Facility
超快红外光谱设备
- 批准号:
LE240100004 - 财政年份:2024
- 资助金额:
$ 52.57万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
- 批准号:
2326788 - 财政年份:2024
- 资助金额:
$ 52.57万 - 项目类别:
Standard Grant
Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
- 批准号:
EP/Y032659/1 - 财政年份:2024
- 资助金额:
$ 52.57万 - 项目类别:
Research Grant
RII Track-4:NSF: Ultrafast Gripping and Release Mechanisms in Slingshot Spider Legs
RII Track-4:NSF:弹弓蜘蛛腿中的超快抓取和释放机制
- 批准号:
2327439 - 财政年份:2024
- 资助金额:
$ 52.57万 - 项目类别:
Standard Grant
THz frequency structures for particle accelerators: Realising ultrafast electron beam manipulation and diagnostics
粒子加速器的太赫兹频率结构:实现超快电子束操纵和诊断
- 批准号:
ST/Y510002/1 - 财政年份:2024
- 资助金额:
$ 52.57万 - 项目类别:
Research Grant
NSF-BSF: Ultrafast Laser-Electron Heating for Tailoring the Emittance and Charge of High-Energy Proton Beams
NSF-BSF:超快激光电子加热用于调整高能质子束的发射率和电荷
- 批准号:
2308860 - 财政年份:2023
- 资助金额:
$ 52.57万 - 项目类别:
Standard Grant