Development of Chiral Charge Density Wave Electronic Devices
手性电荷密度波电子器件的研制
基本信息
- 批准号:1408151
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this proposal is to gain a fundamental understanding of the properties of chiral charge density wave systems and create new electronic devices exploiting unique advantages of the chiral state of the collective charge system. Understanding the nature of chiral charge density wave and learning how to manipulate chiral charge domains will be transformative to the condensed matter physics and it will open the doors to devices based on collective electron excitations. The main advantage of using collective charge systems for electronics is lower power dissipation at high device densities. The fundamental studies will involve both macroscopic and atomic scale investigations of the chiral charge density wave states in carefully engineered two-dimensional materials.The program will provide students and young researchers with necessary tools to carry out modern fundamental research in the fields of materials science, condensed matter physics and electronic device engineering. Since the designed research activities are highly interdisciplinary, the students will be stimulated to take classes across disciplines, such as nanoscience, electron and scanning probe microscopy and nanofabrication. The plan is to broaden participation and appreciation of students through (a) incorporating elements of the research in existing nanoscience, nano-electronics and solid-state physics courses at both the undergraduate and graduate level; (b) train students to use state of the art fabrication and characterization tools and (c) expose the students to research enterprise and collaborative research across different organizations. This work should lead to training a PhD student and several undergraduate students. Outreach to local area high schools through senior thesis work experience and science research clubs as well as College's open houses are part of the overreaching strategy to prepare high school students to pursue science and engineering degrees.Chirality breaks down the spatial inversion symmetry and results in unexpected new electronic properties, in particular in systems with reduced dimensionality. In many cases the electronic chirality is facilitated by the specific structure of the system in which it emerges, either on atomic scale or on mesoscopic scale. Recently, it was discovered that one of the well-studied macroscopically correlated electronic state, the charge density wave, also exhibits chiral properties. This proposal explores the opportunity to use the nanometer-size domains of opposite chirality that are separated with domain walls as basic elements for memory and logic units.The goal of the research is to gain a fundamental understanding of the nature of the coupling of the chiral charge density waves with external perturbations, such as light, quasi static electric and magnetic fields with the aim of actively controlling and measuring the chiral state of individual charge density wave domains. Successful manipulation and read-out of the chiral state of individual several nanometer-size domains would enable utilization of the chiral charge systems in information storage and processing. To achieve this goal the investigators will synthesize single crystals of chiral charge density wave materials, conduct local scanning probe characterization as well as bulk characterization on both single crystal and exfoliated few layer crystals of dichalcogenides. Scanning tunneling microscopy on few-layer single crystals as well as coupling the light to the scanning tunneling microscopy junction will play important role in identifying practical regimes for chiral domain manipulation. The use of collective chiral states in electronic devices could dramatically extend the current down-scaling limit of complementary metal-oxide semiconductors that is set by the level of power dissipation in incoherent electron based devices. The fundamental studies will involve both macroscopic and atomic scale investigations of the chiral charge density wave states in carefully engineered two-dimensional materials, thus clearly exposing the complex mesoscopic physics that couples excitonic and charge density wave correlations
该提案的目标是获得对手性电荷密度波系统的性质的基本理解,并利用集体电荷系统的手性状态的独特优势创建新的电子器件。理解手征电荷密度波的本质并学习如何操纵手征电荷畴将对凝聚态物理学产生变革性的影响,它将为基于集体电子激发的器件打开大门。电子设备使用集体充电系统的主要优点是在高器件密度下功耗较低。基础研究将涉及在精心设计的二维材料中的手性电荷密度波态的宏观和原子尺度研究,该计划将为学生和年轻研究人员提供必要的工具,以开展材料科学,凝聚态物理和电子器件工程领域的现代基础研究。由于设计的研究活动是高度跨学科的,学生将被激励采取跨学科的课程,如纳米科学,电子和扫描探针显微镜和纳米纤维。该计划旨在通过以下方式扩大学生的参与和欣赏范围:(a)将研究内容纳入本科和研究生阶段现有的纳米科学、纳米电子学和固态物理学课程;(B)培训学生使用最先进的制造和表征工具;(c)让学生接触研究企业和不同组织的合作研究。这项工作应导致培训一名博士生和几名本科生。通过高年级论文工作经验和科学研究俱乐部以及学院的开放日,向当地高中进行宣传,这是为高中生攻读科学和工程学位做准备的过度策略的一部分。手性打破了空间反演对称性,并导致意想不到的新电子特性,特别是在降低维度的系统中。在许多情况下,电子手性是由它出现的系统的特定结构促进的,无论是在原子尺度上还是在介观尺度上。最近,人们发现,一个被充分研究的宏观相关电子态,电荷密度波,也表现出手征性。这项提议探索了利用纳米尺寸的相反手性畴作为存储器和逻辑单元的基本元件的机会。研究的目标是从根本上了解手性电荷密度波与外部扰动耦合的本质,例如光,准静态电场和磁场,目的是主动控制和测量单个电荷密度波域的手征状态。成功地操纵和读出单个纳米尺寸畴的手性状态将使手性电荷系统在信息存储和处理中的利用成为可能。为了实现这一目标,研究人员将合成手性电荷密度波材料的单晶,进行局部扫描探针表征以及对单晶和剥离的少数层晶体的二硫属化合物的本体表征。少层单晶上的扫描隧道显微镜以及将光耦合到扫描隧道显微镜结将在确定手性畴操纵的实际制度方面发挥重要作用。在电子器件中使用集体手性态可以极大地扩展互补金属氧化物半导体的电流缩小限制,该限制由基于非相干电子的器件中的功率耗散水平设定。基础研究将涉及在精心设计的二维材料中手性电荷密度波态的宏观和原子尺度的研究,从而清楚地揭示耦合激子和电荷密度波相关性的复杂介观物理学
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Goran Karapetrov其他文献
Novel Hall sensors developed for magnetic field imaging systems
- DOI:
10.1016/j.jmmm.2007.02.104 - 发表时间:
2007-09-01 - 期刊:
- 影响因子:
- 作者:
Vladimír Cambel;Goran Karapetrov;Valentyn Novosad;Elena Bartolomé;Dagmar Gregušová;Ján Fedor;Robert Kúdela;Ján Šoltýs - 通讯作者:
Ján Šoltýs
Goran Karapetrov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Goran Karapetrov', 18)}}的其他基金
Development of Chiral Charge Density Wave Devices
手性电荷密度波器件的研制
- 批准号:
1711015 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
Chiral de Rham 复形的上同调与Mathieu Moonshine
- 批准号:11771416
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
- 批准号:
2309886 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
- 批准号:
2344586 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
- 批准号:
2337740 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
- 批准号:
2325147 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Fabrication of chiral plasmonic nanogaps by hot electron-induced metal growth for enhanced enantioselective light-matter interactions
通过热电子诱导金属生长制造手性等离子体纳米间隙以增强对映选择性光-物质相互作用
- 批准号:
23K23191 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Skyrmion lattices in chiral ferromagnets
手性铁磁体中的斯格明子晶格
- 批准号:
EP/Y033256/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Catalytic Enantioselective Strain Release For The Synthesis Of Chiral Cycloalkanes
催化对映选择性应变释放用于合成手性环烷烃
- 批准号:
EP/Y02687X/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Fellowship
Chiral Drug Delivery Systems to Tackle Cancerous Chirality
应对癌症手性的手性药物输送系统
- 批准号:
EP/X027236/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Fellowship
CAREER: Engineering Chiral Nanoscale Interactions to Enhance Nanomaterial Transport and Uptake in Tissue and at Biointerfaces
职业:工程手性纳米级相互作用以增强组织和生物界面中纳米材料的运输和吸收
- 批准号:
2337387 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Room-temperature flexible manipulation of the quantum-metric structure in topological chiral antiferromagnets
拓扑手性反铁磁体中量子度量结构的室温灵活操控
- 批准号:
24K16999 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




