Collaborative Research: Electronically-Scanned Wideband Digital Aperture Antenna Arrays using Multi-Dimensional Space-Time Circuit-Network Resonance: Theory and Hardware

合作研究:使用多维时空电路网络谐振的电子扫描宽带数字孔径天线阵列:理论和硬件

基本信息

  • 批准号:
    1408361
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

An aperture array is a group of antennas that can be deployed in particular geometric patterns to detect radio signals at a given range of frequencies. Using an array is beneficial for electrical engineering because it can magnify a radio signal in the direction of that signal while suppressing noise and interference through a process known as beamforming. In addition, an antenna array can be used to detect the direction and distance of the signal's source. Aperture arrays are a crucial component of scientific instruments that measure the spatial distribution of radio sources. For example, radio telescopes, such as the Square Kilometer Array (SKA) instrument, rely on aperture arrays to generate precise radio images of electromagnetic sources for experimental cosmology and space science. These instruments image the sky using closely spaced radio beams known as radio pixels. Closely packed sets of such beams can be achieved by using hexagonal pixel grids, which are considered ideal for scientific studies. In order to build aperture beamformers to be used for a specific purpose, efficient schemes for processing the antenna array signals must be developed to reduce the computing time, energy consumption, and costs for the hardware required in the system. The proposed research creates new algorithms and digital computing architectures that will produce highly-focused hexagonal radio pixels for the most demanding of microwave imaging applications. The same aperture arrays are used in radar and wireless communication systems for signature detection and signal intelligence. In fact, aperture arrays are absolutely essential for national security and public safety from a threat detection perspective. In addition to its scientific merits and benefits for national security, this project will train highly qualified personnel (HQP), who will contribute to commercial industry, scientific research, public safety agencies, and the defense sector. Specific efforts will focus on promoting Women in Engineering programs in higher education to recruit and guide female engineering students at both the graduate and undergraduate levels. The proposed research tackles the problem of highly directional sparse aperture arrays using the mathematical properties of multi-dimensional recursive digital filters. The NSF-sponsored effort will develop hardware systems for aperture arrays based on the proposed concept of network-resonant phased-arrays (NRPAs). Multi-dimensional (MD) circuit theory and digital hardware form an enabling technology for imaging algorithms that can greatly improve performance over traditional technologies. This research proposes groundbreaking techniques based on array signal processing, circuits and systems. It will result in a significant improvement in the directional sensitivity while using a lower number of array elements compared to traditional phased array receivers of the same sensitivity. The proposed NRPAs combine the concept of network resonance with phased array technology to gain significant improvement in both directionality and sensitivity. The MD circuit theoretical concept of network resonance allows digital beamformers to have complex pole manifolds. These properties are shown to have advantages in terms of ultra-wideband frequency response, exceptional directionality, multi-beams with shape control, rapid steerability, and low computational complexity. This project investigates radio beams with a hexagonal sky-print for optimal sensing and microwave imaging over wide fields-of-view and bandwidths. The proposed NRPAs will be extended to both sparse and random arrays via theoretical formulations for decreasing hardware cost, reducing energy expended in computers and increasing design flexibility.
孔径阵列是一组天线,可以在特定的几何图案中部署,以在给定的频率范围内检测无线电信号。使用阵列对电气工程是有益的,因为它可以在该信号的方向上放大无线电信号,同时通过称为波束形成的过程抑制噪声和干扰。另外,天线阵列可用于检测信号源的方向和距离。 孔径阵列是衡量无线电空间分布的科学仪器的关键组成部分。例如,射电望远镜(例如平方公里阵列(SKA)仪器)依靠光圈阵列来生成用于实验宇宙学和太空科学的电磁源的精确无线电图像。这些仪器使用称为无线电像素的紧密间隔梁对天空进行图像。通过使用六角形像素网格可以实现紧密包装的此类梁,这被认为是科学研究的理想之选。为了构建用于特定目的的光圈束构造器,必须开发用于处理天线阵列信号的高效方案,以减少系统中所需的硬件的计算时间,能耗和成本。拟议的研究创建了新的算法和数字计算体系结构,这些算法将产生高度关注的六角形无线电像素,以最高的微波影像学应用程序。雷达和无线通信系统中使用了相同的光圈阵列,以进行签名检测和信号智能。实际上,从威胁检测的角度来看,孔径阵列对于国家安全和公共安全绝对是必不可少的。除了对国家安全的科学优点和利益外,该项目还将培训高素质的人员(HQP),后者将为商业行业,科学研究,公共安全机构和国防部门做出贡献。具体的努力将着重于促进高等教育工程计划的妇女,以招募和指导研究生和本科生的女性工程专业学生。拟议的研究使用多维递归数字过滤器的数学特性解决了高度方向稀疏的孔径阵列的问题。由NSF赞助的工作将基于提议的网络共鸣式阵列(NRPA)的概念开发用于光圈阵列的硬件系统。多维(MD)电路理论和数字硬件构成了一种用于成像算法的能力技术,可以极大地改善传统技术的性能。这项研究提出了基于阵列信号处理,电路和系统的开创性技术。与传统的相同灵敏度相比,使用较低的阵列元素,同时使用较低的阵列元素,这将导致方向灵敏度的显着提高。拟议的NRPA将网络共振的概念与分阶段阵列技术相结合,以在方向性和灵敏度方面得到显着改善。网络共振的MD电路理论概念允许数字波束形成器具有复杂的极歧管。这些属性在超宽带频率响应,特殊方向性,具有形状控制的多光束,快速可引导性和低计算复杂性方面具有优势。该项目用六角形的天空打印来调查无线电梁,以在广阔的视野和带宽上进行最佳感测和微波成像。提出的NRPA将通过理论配方降低硬件成本,减少计算机中消耗的能量并提高设计灵活性,从而扩展到稀疏和随机阵列。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Habarakada Madanayake其他文献

Habarakada Madanayake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Habarakada Madanayake', 18)}}的其他基金

Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
  • 批准号:
    2229471
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
  • 批准号:
    2329012
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
I-Corps: NextG Wireless Communications
I-Corps:NextG 无线通信
  • 批准号:
    2243346
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Distributed Electro-Mechanical Transmitters for Adaptive and Power-Efficient Wireless Communications in RF-Denied Environments
合作研究:分布式机电发射器,用于射频干扰环境中的自适应和高能效无线通信
  • 批准号:
    1904382
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
  • 批准号:
    1902283
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: Spatially Oversampled Dense Multi-Beam Millimeter-Wave Communications for Exponentially Increased Energy-Efficiency
SpecEES:协作研究:空间过采样密集多波束毫米波通信,以指数方式提高能源效率
  • 批准号:
    1854798
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
  • 批准号:
    1711625
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SpecEES: Collaborative Research: Spatially Oversampled Dense Multi-Beam Millimeter-Wave Communications for Exponentially Increased Energy-Efficiency
SpecEES:协作研究:空间过采样密集多波束毫米波通信,以指数方式提高能源效率
  • 批准号:
    1731722
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CI-P: Collaborative Project: Planning for Community Infrastructure to Support Research for Simulating Complex Systems
CI-P:合作项目:规划社区基础设施以支持复杂系统仿真研究
  • 批准号:
    1629903
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EARS: Collaborative Research: Enhancing Spectral Access via Directional Spectrum Sensing Employing 3D Cone Filterbanks: Interdisciplinary Algorithms and Prototypes
EARS:协作研究:使用 3D 锥形滤波器组通过定向频谱传感增强频谱访问:跨学科算法和原型
  • 批准号:
    1247940
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

直面新工作方式挑战:电子沟通对工作投入的双面效应、作用机制及干预策略研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
电子密度分布与辅助加热及送料方式的相关物理研究
  • 批准号:
    11275059
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
一种探测生物超微弱发光的位敏阳极光子计数成像探测器研究
  • 批准号:
    31070887
  • 批准年份:
    2010
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
融合膜电子传递方式和质子转移与磷酸化关系的研究
  • 批准号:
    38671062
  • 批准年份:
    1986
  • 资助金额:
    4.0 万元
  • 项目类别:
    面上项目

相似海外基金

CPS: Small: Collaborative Research: CYDER: CYbersecure Distribution systems with power Electronically interfaced Renewables
CPS:小型:协作研究:CYDER:CYbersecure 电力配电系统电子接口可再生能源
  • 批准号:
    1953213
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CPS: Small: Collaborative Research: CYDER: CYbersecure Distribution systems with power Electronically interfaced Renewables
CPS:小型:协作研究:CYDER:CYbersecure 电力配电系统电子接口可再生能源
  • 批准号:
    1837359
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CPS: Small: Collaborative Research: CYDER: CYbersecure Distribution systems with power Electronically interfaced Renewables
CPS:小型:协作研究:CYDER:CYbersecure 电力配电系统电子接口可再生能源
  • 批准号:
    1837700
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Electronically-Scanned Wideband Digital Aperture Antenna Arrays using Multi-Dimensional Space-Time Circuit-Network Resonance: Theory and Hardware
合作研究:使用多维时空电路网络谐振的电子扫描宽带数字孔径天线阵列:理论和硬件
  • 批准号:
    1408247
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Cyberinfrastructure and Research Facilities: Center for studying electronic structure and spectroscopy of open shell and electronically excited species
合作研究:网络基础设施和研究设施:开放壳层和电子激发物种的电子结构和光谱研究中心
  • 批准号:
    0625237
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了