Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
基本信息
- 批准号:1711625
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2018-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Federal Communications Commission recognizes the need for the wireless industry to explore the 28-95 GHz millimeter-wave (mm-wave) bands where wider bandwidth is available, and future allocations may reach above 100 GHz. This explosion of mm-wave bandwidth opens up applications in 5G wireless systems spanning communications, localization, imaging, and radar. This project addresses fundamental scientific and engineering challenges in generating multiple parallel radio "beams" at mm-wave frequencies. A radio beam refers to a directional channel that establishes point-to-point contact for wireless communications and remote sensing. The ability to form a large number of such radio beams with high bandwidths will tremendously improve the performance for next-generation wireless systems. For example, multiple beams are essential for achieving the orders-of-magnitude increases in capacity, data rate, and geographical penetration required by the explosive growth in wireless applications. Moreover, they are important for both transmitters and receivers. The project will draw on an analogy between the spatial Fourier transform and a thin optical lens to obtain multiple wideband beams. Unlike lens-antenna-based approaches in the literature, this project will use a planar aperture antenna in conjunction with analog integrated circuits to generate many wideband mm-wave beams subject to power and size constraints. The proposed highly integrated approach is attractive for mobile applications including 5G smart devices, the internet of things, mobile robotics, and unmanned aerial vehicles, and other emerging applications focused on mm-waves. In addition to scientific research, the project will ensure that both minority students and female students will be mentored towards careers in mathematics, communications, as well as microwave circuits and systems. Educational materials will be developed for teaching array signal processing, microwave integrated circuit (IC) design, and ultra-high-speed analog signal processing. Principal Investigators (PIs) Madanayake and Mandal will organize a mini-conference to enhance microwave and mm-wave research activities at nearby universities in northeast Ohio. PI Madanayake will collaborate with co-PIs towards mentoring underrepresented students towards careers in Science, Technology, Engineering, and Math (STEM). The proposal team is uniquely placed to promote STEM topics spanning both electrical engineering and mathematics domains. The project will lead to education of the wider community on the importance of cross-disciplinary collaboration. Further, the team will strive to show the importance of learning deeper math topics towards success in technology and engineering careers.A multi-beam array receiver is deeply difficult to realize in IC form due to the underlying complexity of its signal flow graph. In this work, mathematical methods based on the theories of i) sparse factorization of structured complex matrices, and ii) approximate transforms are proposed to solve this problem. The resulting matrices are realized with multi-GHz bandwidths using analog ICs. One of the intellectual contributions is the development of efficient wideband beamformers based on sparse factorizations of delay Vandermonde matrices (DVM). This DVM algorithm solves the longstanding "beam squint" problem, i.e., the fact that the beam direction changes with input frequency, making true wideband operation impossible. Another is the derivation of transform matrices with specified properties that approximate the discrete Fourier transform (DFT). Such approximate transforms are not subjected to the known computational complexity bounds of the exact DFT, and approximate-DFT-based multi-beamformers can in fact be efficiently implemented using current-mode analog ICs. Finally, precision circuit design, digital calibration, built-in self-test, and other methods will be explored for efficiently realizing the proposed multi-beamforming networks in analog IC form.
联邦通信委员会认识到无线行业需要探索28-95 GHz毫米波(MM-WAVE)乐队,在该乐队中,可以使用更宽的带宽,未来的分配可能达到100 GHz以上。 MM波带宽的爆炸爆炸为5G无线系统的应用打开了跨越通信,本地化,成像和雷达的应用。该项目应对在MM波频率上产生多个平行的无线电“横梁”方面的基本科学和工程挑战。无线电梁是指建立无线通信和遥感的点对点触点的方向通道。形成大量具有高带宽的此类无线电梁的能力将极大地改善下一代无线系统的性能。例如,多个光束对于实现无线应用中爆炸性增长所需的容量,数据速率和地理渗透率的增加命令至关重要。此外,它们对于发射器和接收器都很重要。 该项目将在空间傅立叶变换和薄光学镜头之间进行类比,以获得多个宽带梁。与文献中基于镜头的方法不同,该项目将使用平面孔径天线与模拟集成电路结合使用,以生成许多受功率和尺寸约束的宽带MM波梁。拟议的高度集成方法对于包括5G智能设备,物联网,移动机器人技术和无人机以及其他针对MM波的新兴应用程序在内的移动应用程序具有吸引力。除了科学研究外,该项目还将确保少数族裔学生和女学生都将受到数学,通讯以及微波电路和系统的职业的指导。将开发教育材料,用于教学阵列信号处理,微波集成电路(IC)设计和超高速度模拟信号处理。首席研究人员(PIS)Madanayake和Mandal将组织一个小型会议,以增强俄亥俄州东北大学附近大学的微波炉和MM波研究活动。 Pi Madanayake将与Co-Pis合作,以指导代表性不足的学生致力于科学,技术,工程和数学(STEM)的职业。 该提案团队是独特的,以促进跨越电气工程和数学领域的STEM主题。该项目将导致更广泛的社区对跨学科合作的重要性进行教育。此外,团队将努力展示学习更深的数学主题对技术和工程职业成功的重要性。由于其信号流程图的潜在复杂性,因此很难以IC形式实现多光束阵列接收器。在这项工作中,基于i)结构化复合矩阵的稀疏分解的数学方法,ii)提出了近似变换来解决此问题。使用类似ICS使用多GHz带宽实现所得矩阵。智力贡献之一是基于延迟Vandermonde矩阵(DVM)的稀疏因素化的有效宽带束形式的发展。该DVM算法解决了长期存在的“光束斜视”问题,即光束方向随输入频率而变化,从而使真实的宽带操作变得不可能。另一个是具有近似离散傅立叶变换(DFT)的指定属性的变换矩阵的推导。这种近似变换不受精确DFT的已知计算复杂性界限,并且实际上可以使用电流模式模拟IC来有效地实现了基于DFT的多光向形式。最后,将探索精密电路设计,数字校准,内置的自我测试和其他方法,以有效地以模拟IC形式实现所提出的多标志性网络。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analog Approximate-FFT 8/16-Beam Algorithms, Architectures and CMOS Circuits for 5G Beamforming MIMO Transceivers
- DOI:10.1109/jetcas.2018.2832177
- 发表时间:2018-05
- 期刊:
- 影响因子:4.6
- 作者:V. Ariyarathna;A. Madanayake;Xinyao Tang;D. Coelho;R. Cintra;L. Belostotski;S. Mandal;T. Rappaport
- 通讯作者:V. Ariyarathna;A. Madanayake;Xinyao Tang;D. Coelho;R. Cintra;L. Belostotski;S. Mandal;T. Rappaport
Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond
- DOI:10.1109/access.2019.2921522
- 发表时间:2019-01-01
- 期刊:
- 影响因子:3.9
- 作者:Rappaport, Theodore S.;Xing, Yunchou;Trichopoulos, Georgios C.
- 通讯作者:Trichopoulos, Georgios C.
An Offset-Canceling Approximate-DFT Beamforming Architecture for Wireless Transceivers
无线收发器的偏移消除近似 DFT 波束成形架构
- DOI:10.1109/iscas.2018.8351765
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Zhao, Haixiang;Mandal, Soumyajit;Ariyarathna, Viduneth;Madanayake, Arjuna;Cintra, Renato J.
- 通讯作者:Cintra, Renato J.
A Fast DVM Algorithm for Wideband Time-Delay Multi-Beam Beamformers
宽带时滞多波束形成器的快速DVM算法
- DOI:10.1109/tsp.2022.3231182
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Perera, Sirani M.;Lingsch, Levi;Madanayake, Arjuna;Mandal, Soumyajit;Mastronardi, Nicola
- 通讯作者:Mastronardi, Nicola
Wideband $N$ -Beam Arrays Using Low-Complexity Algorithms and Mixed-Signal Integrated Circuits
使用低复杂度算法和混合信号集成电路的宽带 $N$ 波束阵列
- DOI:10.1109/jstsp.2018.2822940
- 发表时间:2018
- 期刊:
- 影响因子:7.5
- 作者:Perera, Sirani M.;Ariyarathna, Viduneth;Udayanga, Nilan;Madanayake, Arjuna;Wu, Ge;Belostotski, Leonid;Wang, Yingying;Mandal, Soumyajit;Cintra, Renato J.;Rappaport, Theodore S.
- 通讯作者:Rappaport, Theodore S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Habarakada Madanayake其他文献
Habarakada Madanayake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Habarakada Madanayake', 18)}}的其他基金
Collaborative Research: SWIFT: AI-based Sensing for Improved Resiliency via Spectral Adaptation with Lifelong Learning
合作研究:SWIFT:基于人工智能的传感通过频谱适应和终身学习提高弹性
- 批准号:
2229471 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329012 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
I-Corps: NextG Wireless Communications
I-Corps:NextG 无线通信
- 批准号:
2243346 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Distributed Electro-Mechanical Transmitters for Adaptive and Power-Efficient Wireless Communications in RF-Denied Environments
合作研究:分布式机电发射器,用于射频干扰环境中的自适应和高能效无线通信
- 批准号:
1904382 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Wideband Multi-Beam Antenna Arrays: Low-Complexity Algorithms and Analog-CMOS Implementations
合作研究:宽带多波束天线阵列:低复杂度算法和模拟 CMOS 实现
- 批准号:
1902283 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Spatially Oversampled Dense Multi-Beam Millimeter-Wave Communications for Exponentially Increased Energy-Efficiency
SpecEES:协作研究:空间过采样密集多波束毫米波通信,以指数方式提高能源效率
- 批准号:
1854798 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Spatially Oversampled Dense Multi-Beam Millimeter-Wave Communications for Exponentially Increased Energy-Efficiency
SpecEES:协作研究:空间过采样密集多波束毫米波通信,以指数方式提高能源效率
- 批准号:
1731722 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CI-P: Collaborative Project: Planning for Community Infrastructure to Support Research for Simulating Complex Systems
CI-P:合作项目:规划社区基础设施以支持复杂系统仿真研究
- 批准号:
1629903 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Electronically-Scanned Wideband Digital Aperture Antenna Arrays using Multi-Dimensional Space-Time Circuit-Network Resonance: Theory and Hardware
合作研究:使用多维时空电路网络谐振的电子扫描宽带数字孔径天线阵列:理论和硬件
- 批准号:
1408361 - 财政年份:2014
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
EARS: Collaborative Research: Enhancing Spectral Access via Directional Spectrum Sensing Employing 3D Cone Filterbanks: Interdisciplinary Algorithms and Prototypes
EARS:协作研究:使用 3D 锥形滤波器组通过定向频谱传感增强频谱访问:跨学科算法和原型
- 批准号:
1247940 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
基于移动卫星星座系统的海洋通信关键技术研究
- 批准号:U1809201
- 批准年份:2018
- 资助金额:198.0 万元
- 项目类别:联合基金项目
不确定环境下基于V2X技术的多智能体协作定位研究
- 批准号:61803034
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
面向能效优先的宽带协作频谱感知关键技术研究
- 批准号:61301103
- 批准年份:2013
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
宽带分布式协作频谱感知与协作传输机理研究
- 批准号:61301100
- 批准年份:2013
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于空间损耗场的宽带协同通信信道阴影衰落相关性建模研究
- 批准号:61371101
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329014 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329012 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329015 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329013 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research:SWIFT:Ultra Wideband Flexible MIMO Radios for Energy Efficient Secure Spectrum Sharing
合作研究:SWIFT:超宽带灵活 MIMO 无线电实现节能安全频谱共享
- 批准号:
2128567 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant