Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
基本信息
- 批准号:1408838
- 负责人:
- 金额:$ 56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYIn the last two decades, there has been a growing appreciation that certain mathematical concepts from differential geometry and topology are sometimes central to the understanding of the behavior of electrons in crystalline solids. The electrons are described by quantum-mechanical wavefunctions, and the manner in which these vary with momentum encodes many kinds of information about the solid, especially its electrical and magnetic responses and their coupling with each other. When the wavefunctions become twisted in momentum space, this results in so-called "topological insulator" states, which have been the focus of intense research interest in the last decade. By definition, electric currents cannot flow in the interior of an insulator, but a topological insulator has the unusual property that there are guaranteed to be current-carrying channels at the surfaces. The present research program is designed to further develop the formal theory of such effects, to invent robust and efficient computational algorithms for computing the related properties of solids, and to carry out a computational search for materials displaying new or enhanced properties. The project will lead to the development of algorithms that will ultimately be implemented in open-source code packages and made available to the wider electronic-structure community. It will also contribute to the development of novel materials that are promising for commercial applications, especially ones involving the coupling of electrical and magnetic responses. Training and mentorship of junior researchers (graduate students and postdocs) will take place, contributing to scientific workforce development.TECHNICAL SUMMARYThis research program is focused on the electronic properties of topological insulators or other materials in which orbital currents play an important role. The objectives are (i) to further develop the formal theory of such systems, making use of the mathematical concepts of Berry phase, Berry curvature, and Chern number from differential geometry; (ii) to invent accurate and efficient computational methods for computing materials properties related to these mathematical concepts; and (iii) to use computational methods to identify promising new materials or structures in which these properties can manifest themselves, potentially leading to technological applications. While much recent work has concentrated on time-reversal invariant topological insulators such as Bi2Se3, the emphasis here will be on quantum anomalous Hall or Chern insulators, axion insulators, and Weyl semimetals, in which time-reversal symmetry is spontaneously broken. While the possibility of the Chern-insulator state was pointed out already 25 years ago, it has only recently been demonstrated experimentally, and that only at low temperature. Strategies will be developed for theoretically identifying possible two-dimensional Chern-insulator states accessible to experimental synthesis, with gaps and Curie temperatures large enough to approach room-temperature operation. A second and overlapping thrust will be on the theory and calculation of materials properties that involve macroscopic orbital currents, including bulk and surface anomalous Hall effects, orbital magnetization, and orbital magnetoelectric couplings. As a cross-cutting theme, computational materials search strategies will be used to identify promising candidate materials and structures that may exhibit the desired topological or magnetoelectric properties, especially including two-dimensional Chern-insulator states at surfaces of normal magnetic insulators and their interfaces with time-reversal-invariant topological insulators.The project will lead to the development of algorithms that will ultimately be implemented in open-source code packages and made available to the wider electronic-structure community. It will also contribute to the development of novel materials that are promising for commercial applications, especially ones involving the coupling of electrical and magnetic responses. Training and mentorship of junior researchers (graduate students and postdocs) will take place, contributing to scientific workforce development.
在过去的二十年里,人们越来越认识到,微分几何和拓扑学中的某些数学概念有时对理解晶体固体中电子的行为至关重要。 电子由量子力学波函数描述,这些波函数随动量变化的方式编码了有关固体的许多信息,特别是它的电和磁响应以及它们之间的耦合。 当波函数在动量空间中发生扭曲时,就会产生所谓的“拓扑绝缘体”状态,这在过去十年中一直是人们强烈研究的焦点。根据定义,电流不能在绝缘体的内部流动,但拓扑绝缘体具有不寻常的特性,即在表面保证有载流通道。 本研究计划旨在进一步发展这种效应的正式理论,发明强大而有效的计算算法来计算固体的相关性能,并进行计算搜索显示新的或增强的性能的材料。该项目将导致算法的开发,这些算法最终将在开源代码包中实现,并提供给更广泛的电子结构社区。 它还将有助于开发具有商业应用前景的新型材料,特别是涉及电和磁响应耦合的材料。将对初级研究人员(研究生和博士后)进行培训和指导,为科学劳动力的发展做出贡献。技术概述本研究计划的重点是拓扑绝缘体或轨道电流发挥重要作用的其他材料的电子特性。目标是(i)利用微分几何中的Berry相位、Berry曲率和陈数等数学概念,进一步发展这类系统的形式理论;(ii)发明精确有效的计算方法,用于计算与这些数学概念相关的材料性质;以及(iii)使用计算方法来识别有希望的新材料或结构,在这些材料或结构中,这些性质可以表现出来,从而可能导致技术应用。虽然最近的工作主要集中在时间反演不变的拓扑绝缘体,如Bi 2Se 3,这里的重点将是量子反常霍尔或陈绝缘体,轴子绝缘体和Weyl半金属,其中时间反演对称性自发破缺。虽然陈氏绝缘体状态的可能性在25年前就被指出,但直到最近才被实验证明,而且只是在低温下。将制定战略,从理论上确定可能的二维陈-绝缘体状态的实验合成,与间隙和居里温度大到足以接近室温操作。第二个和重叠的推力将是对涉及宏观轨道电流的材料特性的理论和计算,包括体和表面异常霍尔效应,轨道磁化和轨道磁电耦合。作为一个交叉主题,计算材料搜索策略将用于识别有希望的候选材料和结构,这些材料和结构可能表现出所需的拓扑或磁电特性,特别是包括二维陈绝缘体状态的表面正常的磁性绝缘体和他们的接口与时间反演不变的拓扑绝缘体。该项目将导致算法的发展,最终将在开放的,源代码包,并提供给更广泛的电子结构社区。 它还将有助于开发具有商业应用前景的新型材料,特别是涉及电和磁响应耦合的材料。将对初级研究人员(研究生和博士后)进行培训和指导,促进科学劳动力的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Vanderbilt其他文献
Designing multifunctionality via assembling dissimilar materials: epitaxial AlN/ScN superlattices
- DOI:
https://doi.org/10.1103/PhysRevLett.123.096801 - 发表时间:
2019 - 期刊:
- 影响因子:
- 作者:
Zhijun Jiang;Charles Paillard;David Vanderbilt;Hongjun Xiang;L. Bellaiche - 通讯作者:
L. Bellaiche
Importance of dynamic lattice effects for crystal field excitations in quantum spin ice candidate Pr2Zr2O7
动态晶格效应对量子自旋冰候选 Pr2Zr2O7 晶体场激发的重要性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yuanyuan Xu;Huiyuan Man;Nan Tang;Santu Baidya;Hongbin Zhang;Satoru Nakatsuji;David Vanderbilt;Natalia Drichko - 通讯作者:
Natalia Drichko
Model for the energetics of Si and Ge (111) surfaces.
Si 和 Ge (111) 表面的能量学模型。
- DOI:
10.1103/physrevb.36.6209 - 发表时间:
1987 - 期刊:
- 影响因子:0
- 作者:
David Vanderbilt - 通讯作者:
David Vanderbilt
David Vanderbilt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Vanderbilt', 18)}}的其他基金
Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
- 批准号:
1954856 - 财政年份:2020
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
DMREF: Collaborative Research: Emergent Functionalities in 3d/5d Multinary Chalcogenides and Oxides
DMREF:协作研究:3d/5d 多元硫属化物和氧化物中的新兴功能
- 批准号:
1629059 - 财政年份:2016
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Enhanced functionalities in 5d transition-metal compounds from large spin-orbit coupling
DMREF/合作研究:通过大自旋轨道耦合增强 5d 过渡金属化合物的功能
- 批准号:
1233349 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
- 批准号:
1005838 - 财政年份:2010
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Electron Correlations and the Properties of Metals and Insulators
电子相关性以及金属和绝缘体的性质
- 批准号:
0801343 - 财政年份:2008
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Berry-Phase Approaches to Electronic Structure Theory and their Applications
电子结构理论的贝里相方法及其应用
- 批准号:
0549198 - 财政年份:2006
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Structural and Electronic Properties of Insulating Materials
绝缘材料的结构和电子性能
- 批准号:
0233925 - 财政年份:2002
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Structural and Electronic Properties of Insulating Materials
绝缘材料的结构和电子性能
- 批准号:
9981193 - 财政年份:1999
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Bulk and Surface Structural Properties of Materials
材料的体积和表面结构特性
- 批准号:
9613648 - 财政年份:1996
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
Postdoc: Research Training for CS&E Postdoctoral Associate in Electronic Structure Theory
博士后:计算机科学研究培训
- 批准号:
9625885 - 财政年份:1996
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 56万 - 项目类别:
Fellowship
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
- 批准号:
2227366 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
IgA and IgM superiority over IgG in neutralizing SARS-CoV-2: Clarifying the mechanisms and application
IgA 和 IgM 在中和 SARS-CoV-2 方面优于 IgG:阐明机制和应用
- 批准号:
24K18274 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sustainable solution for cooling application
冷却应用的可持续解决方案
- 批准号:
10089491 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Collaborative R&D
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 56万 - 项目类别:
Fellowship