DMREF: Collaborative Research: Emergent Functionalities in 3d/5d Multinary Chalcogenides and Oxides
DMREF:协作研究:3d/5d 多元硫属化物和氧化物中的新兴功能
基本信息
- 批准号:1629059
- 负责人:
- 金额:$ 127万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical abstractThis research program is focused on understanding and enlarging the class of materials in which atoms from the bottom rows of the periodic table play an important role. Crystalline compounds containing these elements have an interrelated set of properties including strong coupling between electron motion and spin, unusual magnetic behavior, broader electronic energy bands, and a tendency to pairwise attraction of neighboring atoms. Special attention is given to the exploration of layered materials that include tellurium, as these show a wide variety of structural motifs. First-principles computational methods are used to investigate candidate materials of this class, identifying those that appear most promising as targets for directed synthesis and in-depth experimental study. Comparisons between theory and experiment provide feedback to refocus the theoretical and computational effort. The team provides capabilities in bulk and thin-film materials growth coupled to characterization using optical, scattering, and scanning-probe techniques. The activity provides educational opportunities through the involvement of undergraduates in research, the coordination with outreach programs at the Liberty Science Center in New Jersey, and the organization of topical workshops and conferences.Technical AbstractInterest in 5d materials and 3d/5d hybrids has blossomed in recent years in response to scientific advances and applications in the areas of hard magnets, topological insulators, multiferroics, superconductors, and thermoelectrics. These materials are unique for several reasons. First, strong spin-orbit coupling competes with magnetic, crystal-field, many-body Coulomb, and other interactions in such a way as to drive new physical behaviors, such as the effective spin 1/2 state that emerges in certain iridates. Second, the bonding interactions associated with the larger size of the 5d orbitals promotes inter-cation dimerization in pairwise, chain-like, and other complex orderings. Third, the relativistic shifts in orbital energies, combined with spin-orbit coupling and bandwidth effects, can drive band inversions leading to topological phases and enhanced Rashba splittings. In 3d/5d hybrid materials, the interplay of these properties with the strong magnetic moments and correlation effects associate with the3d ions provides greater chemical flexibility and functional richness. The goal of the present project is to improve the understanding of how spin-orbit coupling enhances functionality in compounds containing 3d and 5d ions, and clarify how properties depend on control parameters such as spin-orbit strength, d-shell filling, dimensionality, and structural distortions. Specifically, the activity consists of a concerted theoretical and experimental exploration of materials in which 3d and 5d transition-metal sites coexist in multicomponent chalcogenide and oxide crystals and films. The unique physical and chemical properties of these materials provide a platform for a materials discovery paradigm in which first-principles computational methods are used to investigate candidate materials, identifying those that appear most promising as targets for directed synthesis and in-depth experimental study. Target materials systems include under-explored binary 5d tellurides, ternary 3d-5d tellurides and selenides, 3d-5d chalcogenide superlattices, and 3d-5d hexagonal chain compounds. The research also targets the synthesis of new materials and nanostructures for topological states including quantum anomalous Hall, strong topological insulator, and Weyl semimetal phases.The methods used in the research are diverse. Comparison between theory and experiment provides feedback to refocus the theoretical and computational effort, which is carried out using first-principles methods including density-functional theory and dynamical mean-field theory. The team provides capabilities in both bulk and thin-film (molecular beam epitaxy and pulsed-laser deposition) growth, while the understanding and optimization of the unique materials properties is facilitated using X-ray, optical, scanning tunneling, transport, and neutron scattering techniques.
非技术摘要本研究项目的重点是了解和扩大一类材料,其中来自周期表底部行的原子起着重要作用。 含有这些元素的晶体化合物具有一组相互关联的性质,包括电子运动和自旋之间的强耦合,不寻常的磁性行为,更宽的电子能带以及相邻原子成对吸引的趋势。特别注意的是给予分层材料,包括碲的探索,因为这些显示了各种各样的结构图案。第一性原理计算方法被用来调查这一类的候选材料,确定那些似乎最有前途的定向合成和深入的实验研究的目标。理论和实验之间的比较提供反馈,以重新集中理论和计算工作。该团队提供散装和薄膜材料生长的能力,并使用光学,散射和扫描探针技术进行表征。该活动通过大学生参与研究,与新泽西自由科学中心的外展计划协调,以及组织专题研讨会和会议,提供了教育机会。技术摘要近年来,随着硬磁体,拓扑绝缘体,多铁性,超导体和热电体。这些材料之所以独特,有几个原因。首先,强自旋-轨道耦合与磁场、晶体场、多体库仑和其他相互作用竞争,从而驱动新的物理行为,例如在某些铱酸盐中出现的有效自旋1/2态。 第二,与较大尺寸的5d轨道相关的成键相互作用促进阳离子间二聚化成对,链状和其他复杂的排序。 第三,轨道能量的相对论位移,结合自旋轨道耦合和带宽效应,可以驱动能带反转,导致拓扑相位和增强的Rashba分裂。在3d/5d杂化材料中,这些性质与3d离子的强磁矩和相关效应的相互作用提供了更大的化学灵活性和功能丰富性。本项目的目标是提高对自旋轨道耦合如何增强含有3d和5d离子的化合物的功能性的理解,并澄清性质如何取决于控制参数,如自旋轨道强度,d-壳层填充,维数和结构扭曲。具体来说,该活动包括协调一致的理论和实验探索的材料,其中3D和5D过渡金属网站共存于多组分硫族化物和氧化物晶体和薄膜。这些材料独特的物理和化学性质为材料发现范式提供了一个平台,其中第一原理计算方法用于研究候选材料,确定那些最有希望作为定向合成和深入实验研究的目标的材料。目标材料系统包括未开发的二元5d碲化物,三元3d-5d碲化物和硒化物,3d-5d硫属化物超晶格和3d-5d六方链状化合物。该研究还针对拓扑态的新材料和纳米结构的合成,包括量子反常霍尔,强拓扑绝缘体和Weyl半金属相。研究中使用的方法多种多样。理论和实验之间的比较提供了反馈,以重新集中的理论和计算工作,这是使用第一性原理方法,包括密度泛函理论和动力学平均场理论。 该团队提供体和薄膜(分子束外延和脉冲激光沉积)生长的能力,同时使用X射线,光学,扫描隧道,传输和中子散射技术促进对独特材料特性的理解和优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Vanderbilt其他文献
Designing multifunctionality via assembling dissimilar materials: epitaxial AlN/ScN superlattices
- DOI:
https://doi.org/10.1103/PhysRevLett.123.096801 - 发表时间:
2019 - 期刊:
- 影响因子:
- 作者:
Zhijun Jiang;Charles Paillard;David Vanderbilt;Hongjun Xiang;L. Bellaiche - 通讯作者:
L. Bellaiche
Importance of dynamic lattice effects for crystal field excitations in quantum spin ice candidate Pr2Zr2O7
动态晶格效应对量子自旋冰候选 Pr2Zr2O7 晶体场激发的重要性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yuanyuan Xu;Huiyuan Man;Nan Tang;Santu Baidya;Hongbin Zhang;Satoru Nakatsuji;David Vanderbilt;Natalia Drichko - 通讯作者:
Natalia Drichko
Model for the energetics of Si and Ge (111) surfaces.
Si 和 Ge (111) 表面的能量学模型。
- DOI:
10.1103/physrevb.36.6209 - 发表时间:
1987 - 期刊:
- 影响因子:0
- 作者:
David Vanderbilt - 通讯作者:
David Vanderbilt
David Vanderbilt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Vanderbilt', 18)}}的其他基金
Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
- 批准号:
1954856 - 财政年份:2020
- 资助金额:
$ 127万 - 项目类别:
Continuing Grant
Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
- 批准号:
1408838 - 财政年份:2014
- 资助金额:
$ 127万 - 项目类别:
Continuing Grant
DMREF/Collaborative Research: Enhanced functionalities in 5d transition-metal compounds from large spin-orbit coupling
DMREF/合作研究:通过大自旋轨道耦合增强 5d 过渡金属化合物的功能
- 批准号:
1233349 - 财政年份:2012
- 资助金额:
$ 127万 - 项目类别:
Standard Grant
Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
- 批准号:
1005838 - 财政年份:2010
- 资助金额:
$ 127万 - 项目类别:
Continuing Grant
Electron Correlations and the Properties of Metals and Insulators
电子相关性以及金属和绝缘体的性质
- 批准号:
0801343 - 财政年份:2008
- 资助金额:
$ 127万 - 项目类别:
Continuing Grant
Berry-Phase Approaches to Electronic Structure Theory and their Applications
电子结构理论的贝里相方法及其应用
- 批准号:
0549198 - 财政年份:2006
- 资助金额:
$ 127万 - 项目类别:
Continuing Grant
Structural and Electronic Properties of Insulating Materials
绝缘材料的结构和电子性能
- 批准号:
0233925 - 财政年份:2002
- 资助金额:
$ 127万 - 项目类别:
Continuing Grant
Structural and Electronic Properties of Insulating Materials
绝缘材料的结构和电子性能
- 批准号:
9981193 - 财政年份:1999
- 资助金额:
$ 127万 - 项目类别:
Continuing Grant
Bulk and Surface Structural Properties of Materials
材料的体积和表面结构特性
- 批准号:
9613648 - 财政年份:1996
- 资助金额:
$ 127万 - 项目类别:
Continuing Grant
Postdoc: Research Training for CS&E Postdoctoral Associate in Electronic Structure Theory
博士后:计算机科学研究培训
- 批准号:
9625885 - 财政年份:1996
- 资助金额:
$ 127万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 127万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 127万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 127万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 127万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 127万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 127万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 127万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 127万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 127万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 127万 - 项目类别:
Standard Grant