Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
基本信息
- 批准号:1954856
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYAn improved understanding of the electronic properties of materials is fundamental to the development of many modern technologies, especially in regard to electronic, magnetic, and optical materials. In recent years, a class of mathematical methods based on so-called "geometric phases" or "Berry phases" have begun to have a profound impact on our understanding of the electronic structure of materials and our ability to compute their properties. This research program is focused on further development of these methods, both at the level of formal theory and in terms of computational implementation. Much of the work is targeted to topological materials, i.e., those in which the quantum-mechanical electronic wave functions are twisted in a certain sense. Such materials are often characterized by certain bulk properties (i.e., those that depend only on the interior of the crystal sample) that nevertheless have specific manifestations on their surfaces. An important theme of this project is to obtain a better understanding of this kind of "bulk-boundary correspondence," especially as it applies to magnetic and magnetoelectric properties. This award also supports the training and mentorship of graduate students by contributing to their career advancement and to the scientific workforce development. In addition, the algorithms and computer codes developed in this project will be contributed in open-source form for the benefit of the wider electronic-structure research community.TECHNICAL SUMMARYThis award supports theoretical and computational research on the electronic properties of materials, with a special emphasis on physical properties whose underlying mathematical description involves geometric quantities based on Berry phases and curvatures. These are typically properties for which macroscopic orbital currents play an important role, and include electric polarization, orbital magnetization, anomalous Hall conductivity, and orbital magnetoelectric couplings. The proper mathematical description of these properties underlies much recent progress in the theory of topological insulator and semimetal phases of crystalline materials. The goals of this research activity include: (i) further development of the formal theory of electronic structure, especially concerning descriptions in terms of geometric quantities; (ii) in-depth studies of the relation between bulk and surface properties; (iii) invention and dissemination of accurate and efficient computational methods for computing materials properties related to these mathematical concepts; and (iv) utilization of computational methods to identify promising new materials or structures in which these properties can manifest themselves. A secondary focus will be on electronic dynamics at both the sudden level, as for quantum quenches across a topological phase boundary, and at the adiabatic level, in connection with the dynamics of phonons in spin-orbit coupled magnetic materials. Methods will include formal theoretical developments; implementation and testing in terms of simple model Hamiltonians; and first-principles electronic structure calculations. Graduate students will be mentored and trained in these methodologies, contributing to their education and career development. The algorithms and computer codes developed in this project will be contributed in open-source form for the benefit of the wider electronic-structure research community. The program also holds out promise for the identification and evaluation of new electronic materials that may ultimately be useful for commercial applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
提高对材料的电子特性的认识是许多现代技术发展的基础,特别是在电子、磁性和光学材料方面。近年来,一类基于所谓“几何相”或“贝里相”的数学方法开始对我们对材料电子结构的理解和计算其性质的能力产生深远的影响。本研究计划的重点是进一步发展这些方法,无论是在形式理论层面还是在计算实现方面。大部分工作都是针对拓扑材料,即那些量子力学电子波函数在某种意义上扭曲的材料。这种材料通常具有某些体积特性(即仅依赖于晶体样品内部的特性),但在其表面具有特定的表现。该项目的一个重要主题是更好地理解这种“体边界对应”,特别是当它适用于磁性和磁电性质时。该奖项还支持研究生的培训和指导,为他们的职业发展和科学劳动力的发展做出贡献。此外,在这个项目中开发的算法和计算机代码将以开源的形式贡献给更广泛的电子结构研究社区。该奖项支持材料电子特性的理论和计算研究,特别强调物理特性,其潜在的数学描述涉及基于Berry相和曲率的几何量。这些是宏观轨道电流发挥重要作用的典型特性,包括电极化、轨道磁化、异常霍尔电导率和轨道磁电耦合。对这些性质的恰当数学描述奠定了晶体材料拓扑绝缘体和半金属相理论的许多最新进展。这项研究活动的目标包括:(i)进一步发展电子结构的形式理论,特别是关于几何量的描述;(ii)深入研究体积与表面性质之间的关系;(iii)发明和传播准确有效的计算方法,用于计算与这些数学概念相关的材料特性;(iv)利用计算方法来识别有前途的新材料或结构,这些特性可以在其中体现出来。第二个重点将是在突然水平上的电子动力学,如跨越拓扑相边界的量子猝灭,以及在绝热水平上的电子动力学,与自旋轨道耦合磁性材料中的声子动力学有关。方法将包括正式的理论发展;简单模型哈密顿量的实现和检验;以及第一性原理电子结构计算。研究生将接受这些方法的指导和培训,为他们的教育和职业发展做出贡献。在这个项目中开发的算法和计算机代码将以开源的形式贡献给更广泛的电子结构研究社区。该项目还为识别和评估最终可能用于商业应用的新电子材料提供了希望。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polarization Selectivity of Aloof-Beam Electron Energy-Loss Spectroscopy in One-Dimensional ZnO Nanorods
- DOI:10.1103/physrevapplied.16.054009
- 发表时间:2021-10
- 期刊:
- 影响因子:4.6
- 作者:Yao-Wen Yeh;Sobhit Singh;D. Vanderbilt;P. Batson
- 通讯作者:Yao-Wen Yeh;Sobhit Singh;D. Vanderbilt;P. Batson
Adiabatic Dynamics of Coupled Spins and Phonons in Magnetic Insulators
- DOI:10.1103/physrevx.14.011041
- 发表时间:2023-07
- 期刊:
- 影响因子:12.5
- 作者:Shang Ren;J. Bonini;M. Stengel;C. Dreyer;D. Vanderbilt
- 通讯作者:Shang Ren;J. Bonini;M. Stengel;C. Dreyer;D. Vanderbilt
Bismuth antiphase domain wall: A three-dimensional manifestation of the Su-Schrieffer-Heeger model
- DOI:10.1103/physrevb.107.045135
- 发表时间:2023-01
- 期刊:
- 影响因子:3.7
- 作者:Jinwoong Kim;Cheng-Yi Huang;Hsin Lin;D. Vanderbilt;N. Kioussis
- 通讯作者:Jinwoong Kim;Cheng-Yi Huang;Hsin Lin;D. Vanderbilt;N. Kioussis
Electronic structure of Humble defects in Ge and Ge0.8Si0.2
Ge和Ge0.8Si0.2中微缺陷的电子结构
- DOI:10.1103/physrevb.106.155302
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Ren, Shang;Yang, Hongbin;Singh, Sobhit;Batson, Philip E.;Garfunkel, Eric L.;Vanderbilt, David
- 通讯作者:Vanderbilt, David
Humble planar defects in SiGe nanopillars
SiGe 纳米柱中的微小平面缺陷
- DOI:10.1103/physrevb.106.054114
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Yang, Hongbin;Ren, Shang;Singh, Sobhit;Turner, Emily M.;Jones, Kevin S.;Batson, Philip E.;Vanderbilt, David;Garfunkel, Eric
- 通讯作者:Garfunkel, Eric
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Vanderbilt其他文献
Designing multifunctionality via assembling dissimilar materials: epitaxial AlN/ScN superlattices
- DOI:
https://doi.org/10.1103/PhysRevLett.123.096801 - 发表时间:
2019 - 期刊:
- 影响因子:
- 作者:
Zhijun Jiang;Charles Paillard;David Vanderbilt;Hongjun Xiang;L. Bellaiche - 通讯作者:
L. Bellaiche
Importance of dynamic lattice effects for crystal field excitations in quantum spin ice candidate Pr2Zr2O7
动态晶格效应对量子自旋冰候选 Pr2Zr2O7 晶体场激发的重要性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yuanyuan Xu;Huiyuan Man;Nan Tang;Santu Baidya;Hongbin Zhang;Satoru Nakatsuji;David Vanderbilt;Natalia Drichko - 通讯作者:
Natalia Drichko
Model for the energetics of Si and Ge (111) surfaces.
Si 和 Ge (111) 表面的能量学模型。
- DOI:
10.1103/physrevb.36.6209 - 发表时间:
1987 - 期刊:
- 影响因子:0
- 作者:
David Vanderbilt - 通讯作者:
David Vanderbilt
David Vanderbilt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Vanderbilt', 18)}}的其他基金
DMREF: Collaborative Research: Emergent Functionalities in 3d/5d Multinary Chalcogenides and Oxides
DMREF:协作研究:3d/5d 多元硫属化物和氧化物中的新兴功能
- 批准号:
1629059 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
- 批准号:
1408838 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
DMREF/Collaborative Research: Enhanced functionalities in 5d transition-metal compounds from large spin-orbit coupling
DMREF/合作研究:通过大自旋轨道耦合增强 5d 过渡金属化合物的功能
- 批准号:
1233349 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Theory and Application of Berry Phase Methods in Solids
固体浆果相法的理论与应用
- 批准号:
1005838 - 财政年份:2010
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Electron Correlations and the Properties of Metals and Insulators
电子相关性以及金属和绝缘体的性质
- 批准号:
0801343 - 财政年份:2008
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Berry-Phase Approaches to Electronic Structure Theory and their Applications
电子结构理论的贝里相方法及其应用
- 批准号:
0549198 - 财政年份:2006
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Structural and Electronic Properties of Insulating Materials
绝缘材料的结构和电子性能
- 批准号:
0233925 - 财政年份:2002
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Structural and Electronic Properties of Insulating Materials
绝缘材料的结构和电子性能
- 批准号:
9981193 - 财政年份:1999
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Bulk and Surface Structural Properties of Materials
材料的体积和表面结构特性
- 批准号:
9613648 - 财政年份:1996
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Postdoc: Research Training for CS&E Postdoctoral Associate in Electronic Structure Theory
博士后:计算机科学研究培训
- 批准号:
9625885 - 财政年份:1996
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 60万 - 项目类别:
Fellowship
Sustainable solution for cooling application
冷却应用的可持续解决方案
- 批准号:
10089491 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Collaborative R&D
Wearable Electronic Skins for Biomedical Application
用于生物医学应用的可穿戴电子皮肤
- 批准号:
2906949 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Studentship
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
- 批准号:
2227366 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant