CSR: Medium: Collaborative Research: Enabling GPUs as First-Class Computing Engines
CSR:媒介:协作研究:使 GPU 成为一流的计算引擎
基本信息
- 批准号:1409095
- 负责人:
- 金额:$ 48.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphics Processing Units (GPUs) are rapidly bringing the computingpower traditionally associated with massively parallel supercomputersinto the mainstream devices we use today. They have the power torevolutionize computing by enabling orders of magnitude faster andmore efficient execution of many applications. Unfortunately, manymodern applications and users cannot take advantage of the computingcapability present in today's GPUs because today's GPUs are used assecondary devices to the much less powerful CPUs. As a result, the massivecomputing power of GPUs gets wasted and underutilized for a largenumber of important applications.This project aims to take a fresh and comprehensive look at GPU designwith the goal of enabling GPUs as first-class computing engines thatcan benefit an overwhelming majority of real-world applications andusers. To this end, this project systematically investigates thehardware/software design space of three new execution models, whichprogressively turn a GPU into an independent, first-class computeengine in a hybrid computing system: 1) an enhanced master-slave modelwhere the GPU is able to perform multiple-application execution, 2) anew peer-to-peer model where the GPU is autonomous of the CPU, 3) ahybrid model where GPUs and CPUs are integrated on the same die andare equals from the applications' and system's viewpoint. The projectcomprehensively develops software, hardware and software/hardwarecooperative scheduling, resource management, and system designtechniques for all three models.If successful, this project can pave the way to making GPUsfirst-class computing engines used in all aspects of our everydaylives for a majority of applications. Doing so is not only expected tolead to much higher degrees of energy efficiency and user productivitybut can also potentially enable new applications and devices that cantake advantage GPUs.
图形处理器(GPU)正在迅速将传统上与大规模并行超级计算机相关的计算能力带入我们今天使用的主流设备。它们有能力通过使许多应用程序的执行速度更快、更高效地提高几个数量级来彻底改变计算。不幸的是,许多现代应用程序和用户无法利用当今GPU的计算能力,因为今天的GPU被用作功能较弱的CPU的辅助设备。本项目旨在对GPU设计进行全新而全面的审视,旨在使GPU成为一流的计算引擎,使绝大多数现实世界的应用程序和用户受益。为此,该项目系统地研究了三种新的执行模型的硬件/软件设计空间,这些模型逐步将GPU转变为混合计算系统中独立的一流计算引擎:1)增强的主从模型,其中GPU能够执行多应用程序执行,2)新的对等模型,其中GPU独立于CPU,3)混合模型,GPU和CPU集成在同一个芯片上,从应用和系统的角度来看是平等的。该项目全面开发了这三种型号的软件、硬件和软硬件协同调度、资源管理和系统设计技术,如果成功,该项目将为使GPU成为我们日常生活的各个方面的一流计算引擎铺平道路。这样做不仅有望导致更高程度的能源效率和用户生产力,而且还可能使新的应用程序和设备能够利用GPU。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahmut Kandemir其他文献
Particle simulation on the Cell BE architecture
- DOI:
10.1007/s10586-011-0169-4 - 发表时间:
2011-07-27 - 期刊:
- 影响因子:4.100
- 作者:
Betul Demiroz;Haluk R. Topcuoglu;Mahmut Kandemir;Oguz Tosun - 通讯作者:
Oguz Tosun
A case for core-assisted bottleneck acceleration in GPUs
GPU 中核心辅助瓶颈加速的案例
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Nandita Vijaykumar;Gennady Pekhimenko;Adwait Jog;A. Bhowmick;Rachata Ausavarungnirun;Chita R. Das;Mahmut Kandemir;T. Mowry;O. Mutlu - 通讯作者:
O. Mutlu
Optimizing Leakage Energy Consumption in Cache Bitlines
- DOI:
10.1007/s10617-005-5345-4 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Soontae Kim;Narayanan Vijaykrishnan;Mahmut Kandemir;Mary Jane Irwin - 通讯作者:
Mary Jane Irwin
Time-constrained optimization of multi-AUV cooperative mine detection
多AUV协同探雷的时间约束优化
- DOI:
10.1109/oceans.2008.5151971 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
R. Prins;Mahmut Kandemir - 通讯作者:
Mahmut Kandemir
An I/O-Conscious Tiling Strategy for Disk-Resident Data Sets
- DOI:
10.1023/a:1014156327748 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:2.700
- 作者:
Mahmut Kandemir;Alok Choudhary;J. Ramanujam - 通讯作者:
J. Ramanujam
Mahmut Kandemir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mahmut Kandemir', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Resource-efficient, Strongly Consistent Replication for the Cloud
合作研究:CNS 核心:小型:资源高效、强一致性的云复制
- 批准号:
2149389 - 财政年份:2022
- 资助金额:
$ 48.41万 - 项目类别:
Standard Grant
PPoSS: Planning: Cross-Layer Design for Cost-Effective HPC in the Cloud
PPoSS:规划:云中经济高效 HPC 的跨层设计
- 批准号:
2028929 - 财政年份:2020
- 资助金额:
$ 48.41万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Automatic Software Patching against Microarchitectual Attacks
SaTC:核心:小型:针对微架构攻击的自动软件修补
- 批准号:
1956032 - 财政年份:2020
- 资助金额:
$ 48.41万 - 项目类别:
Standard Grant
SHF: Small: Characterizing and Optimizing 3D NAND Flash
SHF:小型:表征和优化 3D NAND 闪存
- 批准号:
1908793 - 财政年份:2019
- 资助金额:
$ 48.41万 - 项目类别:
Standard Grant
Frameworks: Re-Engineering Galaxy for Performance, Scalability and Energy Efficiency
框架:重新设计 Galaxy 以提高性能、可扩展性和能源效率
- 批准号:
1931531 - 财政年份:2019
- 资助金额:
$ 48.41万 - 项目类别:
Standard Grant
XPS: FULL: A Fresh Look at Near Data Computing: Coordinated Data and Computation Government
XPS:完整:近数据计算的新视角:协调数据和计算政府
- 批准号:
1629129 - 财政年份:2016
- 资助金额:
$ 48.41万 - 项目类别:
Standard Grant
XPS: FULL:CCA: Extracting Scalable Parallelism by Relaxing the Contracts across the System Stack
XPS:FULL:CCA:通过放松整个系统堆栈的契约来提取可扩展的并行性
- 批准号:
1439021 - 财政年份:2014
- 资助金额:
$ 48.41万 - 项目类别:
Standard Grant
SHF: Medium: Breaking the Physical Divide between Computation and NAND-Flash Storage
SHF:媒介:打破计算和 NAND 闪存存储之间的物理鸿沟
- 批准号:
1302557 - 财政年份:2013
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
SHF: Medium: Automatic Control Driven Resource Management in Chip Multiprocessors
SHF:中:芯片多处理器中自动控制驱动的资源管理
- 批准号:
0963839 - 财政年份:2010
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
Collaborative Research: Adaptive Techniques for Achieving End-to-End QoS in the I/O Stack on Petascale Multiprocessors
协作研究:在千万级多处理器上的 I/O 堆栈中实现端到端 QoS 的自适应技术
- 批准号:
0937949 - 财政年份:2009
- 资助金额:
$ 48.41万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312206 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Architecting GPUs for Practical Homomorphic Encryption-based Computing
协作研究:CSR:中:为实用的同态加密计算构建 GPU
- 批准号:
2312276 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2312689 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2401244 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Scaling Secure Serverless Computing on Heterogeneous Datacenters
协作研究:CSR:中:在异构数据中心上扩展安全无服务器计算
- 批准号:
2312207 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
- 批准号:
2312760 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Core: Medium: Scaling Unix/Linux Shell Programs
协作研究:CSR:核心:中:扩展 Unix/Linux Shell 程序
- 批准号:
2312346 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
- 批准号:
2312397 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
- 批准号:
2312396 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Adaptive Environmental Awareness for Collaborative Augmented Reality
协作研究:企业社会责任:媒介:协作增强现实的自适应环境意识
- 批准号:
2312761 - 财政年份:2023
- 资助金额:
$ 48.41万 - 项目类别:
Continuing Grant