Collaborative Research: CNS Core: Small: Resource-efficient, Strongly Consistent Replication for the Cloud
合作研究:CNS 核心:小型:资源高效、强一致性的云复制
基本信息
- 批准号:2149389
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Data storage within cloud computing systems relies upon replication protocols that store copies of data on multiple servers for reliability. A desirable property of a replication protocol is strong consistency - the ability of multiple servers with copies of data to act as a single, highly performant system with one copy of the data, even when some of the servers fail. Existing strongly consistent protocols improve performance at the cost of sacrificing resource efficiency, which increases the cost of data storage on the cloud. This project aims to explore the inefficiencies in current protocols and design new protocols for cloud computing systems.This project will study the resource efficiency of existing replication protocols, focusing on cloud deployments in resource-shared settings. Such investigation would be incomplete without including other environmental factors, such as programming language and framework choices. In addition, the project will use the investigation results to design new resource-efficient protocols and optimizations. These will leverage the core algorithmic improvements in addition to new hardware technologies, such as Remote Direct Memory Access (RDMA) and Non-volatile Memory (NVM). The developed protocols will streamline communication, avoid unnecessary message exchange, prioritize lower overhead communication strategies, and reduce work amplification.Educational and technology transfer aspects play a significant role in this project. This work will facilitate bidirectional technology transfer between academia and industry through meetings and collaborations. To further remove technology-transfer barriers, all protocols and algorithms will be well-documented and open-sourced. This project will bring under the spotlight the importance of building resource-efficient software in cloud computing environments and will develop a new class, projects, and lab modules emphasizing design techniques and programming practices that increase resource efficiency in the cloud software. Through the curriculum and teaching, the project aims to engage undergraduate students and students from underrepresented groups.This project will release all code artifacts, data, and curriculum materials on the GitHub platform. If applicable, any large datasets or raw data materials will be stored in a public cloud storage system. The project will maintain the GitHub repository, available at https://github.com/resource-efficient-replication. Upon the completion of the project, the GitHub handle will remain active for historical purposes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
云计算系统中的数据存储依赖于复制协议,该协议将数据副本存储在多个服务器上以提高可靠性。复制协议的一个理想属性是强一致性—具有数据副本的多个服务器能够充当具有一个数据副本的单个高性能系统,即使在某些服务器出现故障时也是如此。现有的强一致性协议以牺牲资源效率为代价来提高性能,从而增加了云上数据存储的成本。本项目旨在探索当前协议的低效率,并为云计算系统设计新的协议。该项目将研究现有复制协议的资源效率,重点关注资源共享设置中的云部署。如果不包括其他环境因素,如编程语言和框架的选择,这种调查将是不完整的。此外,该项目将利用调查结果设计新的资源高效协议和优化。这些将利用核心算法的改进以及新的硬件技术,如远程直接内存访问(RDMA)和非易失性内存(NVM)。开发的协议将简化通信,避免不必要的消息交换,优先考虑较低开销的通信策略,并减少工作放大。教育和技术转让方面在这个项目中起着重要作用。这项工作将通过会议和合作促进学术界和工业界之间的双向技术转让。为了进一步消除技术转移障碍,所有协议和算法都将被充分记录和开源。这个项目将把在云计算环境中构建资源高效软件的重要性置于聚光灯下,并将开发一个新的类、项目和实验室模块,强调在云软件中提高资源效率的设计技术和编程实践。通过课程和教学,该项目旨在吸引本科生和来自代表性不足群体的学生。该项目将在GitHub平台上发布所有代码构件、数据和课程材料。如有需要,所有大型数据集或原始数据都将存储在公有云存储系统中。该项目将维护GitHub存储库,可在https://github.com/resource-efficient-replication上获得。在项目完成后,GitHub句柄将出于历史目的保持活动状态。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahmut Kandemir其他文献
Particle simulation on the Cell BE architecture
- DOI:
10.1007/s10586-011-0169-4 - 发表时间:
2011-07-27 - 期刊:
- 影响因子:4.100
- 作者:
Betul Demiroz;Haluk R. Topcuoglu;Mahmut Kandemir;Oguz Tosun - 通讯作者:
Oguz Tosun
A case for core-assisted bottleneck acceleration in GPUs
GPU 中核心辅助瓶颈加速的案例
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Nandita Vijaykumar;Gennady Pekhimenko;Adwait Jog;A. Bhowmick;Rachata Ausavarungnirun;Chita R. Das;Mahmut Kandemir;T. Mowry;O. Mutlu - 通讯作者:
O. Mutlu
Optimizing Leakage Energy Consumption in Cache Bitlines
- DOI:
10.1007/s10617-005-5345-4 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Soontae Kim;Narayanan Vijaykrishnan;Mahmut Kandemir;Mary Jane Irwin - 通讯作者:
Mary Jane Irwin
Time-constrained optimization of multi-AUV cooperative mine detection
多AUV协同探雷的时间约束优化
- DOI:
10.1109/oceans.2008.5151971 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
R. Prins;Mahmut Kandemir - 通讯作者:
Mahmut Kandemir
An I/O-Conscious Tiling Strategy for Disk-Resident Data Sets
- DOI:
10.1023/a:1014156327748 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:2.700
- 作者:
Mahmut Kandemir;Alok Choudhary;J. Ramanujam - 通讯作者:
J. Ramanujam
Mahmut Kandemir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mahmut Kandemir', 18)}}的其他基金
PPoSS: Planning: Cross-Layer Design for Cost-Effective HPC in the Cloud
PPoSS:规划:云中经济高效 HPC 的跨层设计
- 批准号:
2028929 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Automatic Software Patching against Microarchitectual Attacks
SaTC:核心:小型:针对微架构攻击的自动软件修补
- 批准号:
1956032 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SHF: Small: Characterizing and Optimizing 3D NAND Flash
SHF:小型:表征和优化 3D NAND 闪存
- 批准号:
1908793 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Frameworks: Re-Engineering Galaxy for Performance, Scalability and Energy Efficiency
框架:重新设计 Galaxy 以提高性能、可扩展性和能源效率
- 批准号:
1931531 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
XPS: FULL: A Fresh Look at Near Data Computing: Coordinated Data and Computation Government
XPS:完整:近数据计算的新视角:协调数据和计算政府
- 批准号:
1629129 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Enabling GPUs as First-Class Computing Engines
CSR:媒介:协作研究:使 GPU 成为一流的计算引擎
- 批准号:
1409095 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
XPS: FULL:CCA: Extracting Scalable Parallelism by Relaxing the Contracts across the System Stack
XPS:FULL:CCA:通过放松整个系统堆栈的契约来提取可扩展的并行性
- 批准号:
1439021 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SHF: Medium: Breaking the Physical Divide between Computation and NAND-Flash Storage
SHF:媒介:打破计算和 NAND 闪存存储之间的物理鸿沟
- 批准号:
1302557 - 财政年份:2013
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
SHF: Medium: Automatic Control Driven Resource Management in Chip Multiprocessors
SHF:中:芯片多处理器中自动控制驱动的资源管理
- 批准号:
0963839 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Adaptive Techniques for Achieving End-to-End QoS in the I/O Stack on Petascale Multiprocessors
协作研究:在千万级多处理器上的 I/O 堆栈中实现端到端 QoS 的自适应技术
- 批准号:
0937949 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant