XPS: FULL: A Fresh Look at Near Data Computing: Coordinated Data and Computation Government
XPS:完整:近数据计算的新视角:协调数据和计算政府
基本信息
- 批准号:1629129
- 负责人:
- 金额:$ 87.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many important computer applications in our daily lives depend on processing large amounts of data. While moving data from storage devices to processing components can be very time consuming, with increasing core counts and emerging applications, moving data within a computer system can also incur significant latencies, thereby hurting application performance and energy efficiency. Unfortunately, existing solutions to minimize this data movement overhead have limited potential. Thus, it has become essential to explore a holistic approach for minimizing data movements, and shifting from the compute-centric model being used today to a data-centric or near-data computing (NDC) model for effectively handling the data processing needs of different classes of applications. The PIs aim to integrate their research on NDC with the educational activities and student training at Penn State for nurturing the future workforce in science and engineering. The outreach activities include engaging undergraduates in the NDC research, and working with the CSATS (Center for Science and the Schools) and VIEW (Visit In Engineering Weekend) programs at Penn State to get involved with the ongoing STEM-oriented K-12 activities.This project aims to revisit the near-data computing concept from a fresh perspective by undertaking a cross-layer approach for exploring the potential benefits of moving computation closer to data. Thus, instead of considering only the Boolean extremes of near-data computing in the hardware of processor core vs. the DRAM (as in the case of past attempts), this project explores a rich spectrum of possibilities between these two. Specifically, focusing on emerging multicore systems and multithreaded applications from three important application domains (high performance computing, embedded/mobile computing, and datacenter computing), this research tries to address the "where", "when", "what", and "how" questions of near-data computing in the context of deep memory hierarchies. This comprehensive approach to moving computation closer to the data aims to break the memory wall, which is the biggest barrier to the scalability of emerging chip multiprocessors.
我们日常生活中的许多重要计算机应用都依赖于处理大量数据。虽然将数据从存储设备移动到处理组件可能非常耗时,但随着核数的增加和新兴应用的出现,在计算机系统内移动数据也可能导致显著的延迟,从而损害应用性能和能源效率。不幸的是,现有的解决方案,以最大限度地减少这种数据移动开销的潜力有限。因此,必须探索一种整体方法,以最大限度地减少数据移动,并从目前使用的以计算为中心的模型转变为以数据为中心或近数据计算(NDC)模型,以有效地处理不同类别应用程序的数据处理需求。PI旨在将他们对NDC的研究与宾夕法尼亚州立大学的教育活动和学生培训相结合,以培养未来的科学和工程劳动力。外联活动包括让本科生参与国家数据中心的研究,与CSATS合作(科学和学校中心)和VIEW(Visit In Engineering Weekend)计划,参与正在进行的面向STEM的K-12活动。该项目旨在通过进行跨学科的研究,从一个新的角度重新审视近数据计算的概念。层的方法来探索移动计算更接近数据的潜在好处。因此,该项目不是只考虑处理器核心与DRAM硬件中的接近数据计算的布尔极端(如过去尝试的情况),而是探索这两者之间的丰富可能性。具体而言,集中在新兴的多核系统和多线程应用程序从三个重要的应用领域(高性能计算,嵌入式/移动的计算,和数据中心计算),本研究试图解决“在哪里”,“何时”,“什么”,和“如何”的问题,近数据计算的上下文中的深内存层次结构。这种将计算更接近数据的综合方法旨在打破内存墙,这是新兴芯片多处理器可扩展性的最大障碍。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Getting more performance with polymorphism from emerging memory technologies
- DOI:10.1145/3319647.3325826
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Iyswarya Narayanan;Aishwarya Ganesan;Anirudh Badam;Sriram Govindan;Bikash Sharma;A. Sivasubramaniam
- 通讯作者:Iyswarya Narayanan;Aishwarya Ganesan;Anirudh Badam;Sriram Govindan;Bikash Sharma;A. Sivasubramaniam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahmut Kandemir其他文献
Particle simulation on the Cell BE architecture
- DOI:
10.1007/s10586-011-0169-4 - 发表时间:
2011-07-27 - 期刊:
- 影响因子:4.100
- 作者:
Betul Demiroz;Haluk R. Topcuoglu;Mahmut Kandemir;Oguz Tosun - 通讯作者:
Oguz Tosun
A case for core-assisted bottleneck acceleration in GPUs
GPU 中核心辅助瓶颈加速的案例
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Nandita Vijaykumar;Gennady Pekhimenko;Adwait Jog;A. Bhowmick;Rachata Ausavarungnirun;Chita R. Das;Mahmut Kandemir;T. Mowry;O. Mutlu - 通讯作者:
O. Mutlu
Optimizing Leakage Energy Consumption in Cache Bitlines
- DOI:
10.1007/s10617-005-5345-4 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Soontae Kim;Narayanan Vijaykrishnan;Mahmut Kandemir;Mary Jane Irwin - 通讯作者:
Mary Jane Irwin
Time-constrained optimization of multi-AUV cooperative mine detection
多AUV协同探雷的时间约束优化
- DOI:
10.1109/oceans.2008.5151971 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
R. Prins;Mahmut Kandemir - 通讯作者:
Mahmut Kandemir
An I/O-Conscious Tiling Strategy for Disk-Resident Data Sets
- DOI:
10.1023/a:1014156327748 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:2.700
- 作者:
Mahmut Kandemir;Alok Choudhary;J. Ramanujam - 通讯作者:
J. Ramanujam
Mahmut Kandemir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mahmut Kandemir', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Resource-efficient, Strongly Consistent Replication for the Cloud
合作研究:CNS 核心:小型:资源高效、强一致性的云复制
- 批准号:
2149389 - 财政年份:2022
- 资助金额:
$ 87.5万 - 项目类别:
Standard Grant
PPoSS: Planning: Cross-Layer Design for Cost-Effective HPC in the Cloud
PPoSS:规划:云中经济高效 HPC 的跨层设计
- 批准号:
2028929 - 财政年份:2020
- 资助金额:
$ 87.5万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Automatic Software Patching against Microarchitectual Attacks
SaTC:核心:小型:针对微架构攻击的自动软件修补
- 批准号:
1956032 - 财政年份:2020
- 资助金额:
$ 87.5万 - 项目类别:
Standard Grant
SHF: Small: Characterizing and Optimizing 3D NAND Flash
SHF:小型:表征和优化 3D NAND 闪存
- 批准号:
1908793 - 财政年份:2019
- 资助金额:
$ 87.5万 - 项目类别:
Standard Grant
Frameworks: Re-Engineering Galaxy for Performance, Scalability and Energy Efficiency
框架:重新设计 Galaxy 以提高性能、可扩展性和能源效率
- 批准号:
1931531 - 财政年份:2019
- 资助金额:
$ 87.5万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Enabling GPUs as First-Class Computing Engines
CSR:媒介:协作研究:使 GPU 成为一流的计算引擎
- 批准号:
1409095 - 财政年份:2014
- 资助金额:
$ 87.5万 - 项目类别:
Continuing Grant
XPS: FULL:CCA: Extracting Scalable Parallelism by Relaxing the Contracts across the System Stack
XPS:FULL:CCA:通过放松整个系统堆栈的契约来提取可扩展的并行性
- 批准号:
1439021 - 财政年份:2014
- 资助金额:
$ 87.5万 - 项目类别:
Standard Grant
SHF: Medium: Breaking the Physical Divide between Computation and NAND-Flash Storage
SHF:媒介:打破计算和 NAND 闪存存储之间的物理鸿沟
- 批准号:
1302557 - 财政年份:2013
- 资助金额:
$ 87.5万 - 项目类别:
Continuing Grant
SHF: Medium: Automatic Control Driven Resource Management in Chip Multiprocessors
SHF:中:芯片多处理器中自动控制驱动的资源管理
- 批准号:
0963839 - 财政年份:2010
- 资助金额:
$ 87.5万 - 项目类别:
Continuing Grant
Collaborative Research: Adaptive Techniques for Achieving End-to-End QoS in the I/O Stack on Petascale Multiprocessors
协作研究:在千万级多处理器上的 I/O 堆栈中实现端到端 QoS 的自适应技术
- 批准号:
0937949 - 财政年份:2009
- 资助金额:
$ 87.5万 - 项目类别:
Standard Grant
相似国自然基金
钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
- 批准号:51871067
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
- 批准号:
DP240100938 - 财政年份:2024
- 资助金额:
$ 87.5万 - 项目类别:
Discovery Projects
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 87.5万 - 项目类别:
Research Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 87.5万 - 项目类别:
Standard Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
- 批准号:
2338371 - 财政年份:2024
- 资助金额:
$ 87.5万 - 项目类别:
Standard Grant
CAREER: From Flamelet to Full-Scale: Advancing Plasma-Assisted Combustion for Low-Emission Sustainable Fuels
职业生涯:从小火焰到全面:推进低排放可持续燃料的等离子体辅助燃烧
- 批准号:
2339518 - 财政年份:2024
- 资助金额:
$ 87.5万 - 项目类别:
Continuing Grant
STTR Phase II: Dermatologist-level detection of suspicious pigmented skin lesions from high-resolution full-body images
STTR II 期:通过高分辨率全身图像对可疑色素性皮肤病变进行皮肤科医生级别的检测
- 批准号:
2335086 - 财政年份:2024
- 资助金额:
$ 87.5万 - 项目类别:
Cooperative Agreement
Toward carbon-neutral society: Development of a full-sustainable eco-friendly green mining process for gold recovery
迈向碳中和社会:开发完全可持续的环保绿色采矿工艺以回收黄金
- 批准号:
24K17540 - 财政年份:2024
- 资助金额:
$ 87.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 87.5万 - 项目类别:
Continuing Grant
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
- 批准号:
EP/X041581/1 - 财政年份:2024
- 资助金额:
$ 87.5万 - 项目类别:
Research Grant
Full mitigation of birefringence for high-precision optical experiments
完全缓解双折射,实现高精度光学实验
- 批准号:
24K00649 - 财政年份:2024
- 资助金额:
$ 87.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)