Domain Mechanisms in Magnetic Shape Memory Alloys
磁性形状记忆合金中的域机制
基本信息
- 批准号:1409317
- 负责人:
- 金额:$ 20.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical and computational research and education that is aimed to advance fundamental understanding of domain phenomena in magnetic shape memory alloys as well as other technologically important multifunctional materials for applications in sensors, actuators, transducers, and energy harvesting. Domains are usually tiny regions inside of materials but still contain many atoms that have organized themselves in the same way, for example with the same structure or same magnetic orientation, but are organized differently in neighboring domains. Physical processes involving domains are responsible for the properties of these materials that make them useful for a particular application, their functionality. The PI will combine complementary domain-level computational and experimental approaches to investigate domain phenomena in complex magnetic materials with an aim to establish connections between materials properties and domain processes. The research will provide training for a graduate student in materials science, and creates research opportunities and experiences for undergraduates. The research outcomes provide valuable real-world inspired examples for teaching computational materials science and physical behaviors of materials in courses. The PI will participate in existing outreach activities at Michigan Technological University to promote materials science and engineering among high school students, women and underrepresented minorities.TECHNICAL SUMMARYThis award supports theoretical and computational research and education that is aimed to advance fundamental understanding of domain phenomena in magnetic shape memory alloys and other technologically important multifunctional materials. Magnetic shape memory alloys actively respond to external magnetic, mechanical, and thermal stimuli, and are capable of energy conversion. Magnetic shape memory alloy functionalities originate from the evolution of coupled magnetic and elastic domain microstructures, which leads to rich domain phenomena and sophisticated physical behaviors that are important for both basic science and technological applications. The PI seeks to establish correlations between macroscopic properties and internal domain processes, identify underlying domain mechanisms, and find effective ways to optimize the domain microstructures and control their evolution pathways to tailor the useful properties. This project involves the quantitative investigation of coupled magnetic and elastic domain processes to address important domain mechanisms by domain-level modeling and simulations using phase-field micromagnetic microelastic methods and in-situ domain observation experiments using an interference-contrast-colloid technique. In particular, the PI will focus on the effects of (i) magnetostriction, (ii) twin boundary mobility, (iii) magnetic easy direction, and (iv) nanoscale structural heterogeneity on domain processes and the resultant field-induced deformation behaviors. These effects determine magnetoelastic properties, but their roles are yet to be clarified. The objectives of the research are to: (1) develop computational tools to perform realistic simulation studies of domain microstructure evolutions; (2) carry out coordinated in-situ domain observation experiments; (3) identify important domain mechanisms governing magnetoelastic behaviors; (4) advance fundamental understanding of domain processes and provide insight into property improvement and guidance for new materials development; and (5) integrate the research into the PI's educational and outreach activities in functional materials and computational materials science.
非技术性总结该奖项支持理论和计算研究和教育,旨在促进对磁性形状记忆合金以及其他技术上重要的多功能材料在传感器,执行器,换能器和能量收集应用中的磁畴现象的基本理解。畴通常是材料内部的微小区域,但仍然包含许多以相同方式组织自己的原子,例如具有相同的结构或相同的磁取向,但在相邻畴中组织不同。涉及域的物理过程负责这些材料的特性,使它们对特定应用有用,它们的功能。PI将结合联合收割机互补域级计算和实验方法,以研究复杂磁性材料中的磁畴现象,旨在建立材料特性和磁畴过程之间的联系。该研究将为材料科学研究生提供培训,并为本科生创造研究机会和经验。研究成果为计算材料科学和材料物理行为的课程教学提供了有价值的现实启发的例子。PI将参与密歇根理工大学现有的推广活动,在高中生,妇女和代表性不足的少数民族中推广材料科学和工程。技术总结该奖项支持理论和计算研究和教育,旨在促进对磁性形状记忆合金和其他技术重要的多功能材料中畴现象的基本理解。磁性形状记忆合金对外界的磁、机械和热刺激有积极的响应,并且能够进行能量转换。磁性形状记忆合金的功能起源于耦合的磁畴和弹性畴微结构的演化,这导致了丰富的畴现象和复杂的物理行为,这对于基础科学和技术应用都是重要的。PI旨在建立宏观性能和内部域过程之间的相关性,识别潜在的域机制,并找到有效的方法来优化域微观结构并控制其演化路径以定制有用的性能。该项目涉及耦合的磁性和弹性域过程的定量调查,以解决重要的域机制域级建模和模拟使用相场微磁性微弹性方法和原位域观测实验使用干涉对比胶体技术。特别是,PI将专注于(i)磁致伸缩,(ii)孪晶边界迁移率,(iii)磁易方向,(iv)纳米结构异质性对域过程和由此产生的场致变形行为的影响。这些效应决定了磁弹性性质,但它们的作用还有待澄清。本研究的主要目的是:(1)开发计算工具,对磁畴微观结构的演化进行真实的模拟研究;(2)开展协调的原位磁畴观察实验;(3)识别控制磁弹性行为的重要磁畴机制;(4)推进对磁畴过程的基本理解,为新材料的开发和性能改进提供指导;(5)研究磁畴的微观结构,为新材料的开发提供理论依据。以及(5)将研究纳入PI在功能材料和计算材料科学方面的教育和推广活动中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongmei Jin其他文献
Effects of continuous positive airway pressure on elderly patients with obstructive sleep apnea: a meta-analysis.
持续气道正压通气对老年阻塞性睡眠呼吸暂停患者的影响:一项荟萃分析。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
B. Yan;Yongmei Jin;Yi Hu;Shu Li - 通讯作者:
Shu Li
A Study on the Factors influencing insulin resistance in obese adolescents
肥胖青少年胰岛素抵抗影响因素的研究
- DOI:
10.1016/s1007-4376(09)60014-9 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Yongmei Jin;Pengfei Dou - 通讯作者:
Pengfei Dou
Trajectory-based Tissue Engineering for Cartilage Repair: A Methodology to Better Predict In-Vivo Success
基于轨迹的软骨修复组织工程:更好地预测体内成功的方法
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Lin Qiu;Maodie Ye;Yang Tong;Yongmei Jin - 通讯作者:
Yongmei Jin
Yongmei Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongmei Jin', 18)}}的其他基金
NSF-BSF: Computation-Guided Advanced Fabrication of Silicide Nanostructures with Novel Magnetic Properties
NSF-BSF:计算引导的具有新颖磁性的硅化物纳米结构的先进制造
- 批准号:
2212324 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant
Collaborative Research: Computational Study of Low Volume Solder Interconnects for 3D Integrated Circuit Packaging
合作研究:3D 集成电路封装小体积焊料互连的计算研究
- 批准号:
1462204 - 财政年份:2015
- 资助金额:
$ 20.67万 - 项目类别:
Standard Grant
Computational Study of Microstructure Formation and Magnetic Domain Evolution in FePt Films
FePt 薄膜中微结构形成和磁畴演化的计算研究
- 批准号:
0965081 - 财政年份:2009
- 资助金额:
$ 20.67万 - 项目类别:
Continuing Grant
Computational Study of Microstructure Formation and Magnetic Domain Evolution in FePt Films
FePt 薄膜中微结构形成和磁畴演化的计算研究
- 批准号:
0706354 - 财政年份:2007
- 资助金额:
$ 20.67万 - 项目类别:
Continuing Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
- 批准号:
2319151 - 财政年份:2024
- 资助金额:
$ 20.67万 - 项目类别:
Continuing Grant
Perfluoroalkyl substances and non-alcoholic fatty liver disease in children: Leveraging magnetic resonance imaging to unravel potential mechanisms and exposure mixture effects
全氟烷基物质与儿童非酒精性脂肪肝:利用磁共振成像揭示潜在机制和暴露混合物效应
- 批准号:
10646759 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Molecular mechanisms of the bacterial magnetic organelle surface proteins that functionalize the magnetosome as a biological magnetic needle
将磁小体功能化为生物磁针的细菌磁性细胞器表面蛋白的分子机制
- 批准号:
23H02123 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Revealing Particle Acceleration Mechanisms by Magnetic Energy Release with Advanced Hard X-ray Solar Imaging Spectroscopy
利用先进的硬 X 射线太阳成像光谱揭示磁能释放的粒子加速机制
- 批准号:
22KJ0873 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mapping single nephron glomerular filtration rate with mechanisms of autoregulation in the kidney using magnetic resonance imaging
使用磁共振成像绘制单肾单位肾小球滤过率与肾脏自动调节机制
- 批准号:
10732632 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
CAREER: Beyond alignment: novel mechanisms for controlling block copolymer phase behavior using magnetic fields
职业:超越排列:利用磁场控制嵌段共聚物相行为的新机制
- 批准号:
2143162 - 财政年份:2022
- 资助金额:
$ 20.67万 - 项目类别:
Continuing Grant
Deciphering Reaction Mechanisms of Biomass Upgrading over Zeolitic Materials via Advanced Nuclear Magnetic Resonance (NMR) spectroscopy
通过先进核磁共振 (NMR) 光谱破译沸石材料生物质升级的反应机制
- 批准号:
2787214 - 财政年份:2022
- 资助金额:
$ 20.67万 - 项目类别:
Studentship
Deciphering the Neural Mechanisms of Restrictive Eating in Anorexia Nervosa Using Repetitive Transcranial Magnetic Stimulation
使用重复经颅磁刺激破译神经性厌食症限制饮食的神经机制
- 批准号:
10704120 - 财政年份:2022
- 资助金额:
$ 20.67万 - 项目类别:
Deciphering the Neural Mechanisms of Restrictive Eating in Anorexia Nervosa Using Repetitive Transcranial Magnetic Stimulation
使用重复经颅磁刺激破译神经性厌食症限制饮食的神经机制
- 批准号:
10525743 - 财政年份:2022
- 资助金额:
$ 20.67万 - 项目类别: