Collaborative Research: Experimental and Computational Studies of Solid-State Diffusion and New Phase Formation in Bimetallic Nanostructures
合作研究:双金属纳米结构中固态扩散和新相形成的实验和计算研究
基本信息
- 批准号:1409765
- 负责人:
- 金额:$ 10.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Summary The diffusive motions of atoms can lead to changes in the physical properties of solids over time that range from simple composition variations to the formation and growth of new structures. The effects of these changes (which can be advantageous or disadvantageous) become significant at lower temperatures, shorter time periods, and smaller length scales as the sample size is reduced. As a result, a fundamental understanding of the origins and consequences of these processes is particularly important in nanostructured materials. The research component of this project consists of an experimental and computational study of diffusive atomic motion in bimetallic samples at the nano-scale. The analysis of the experimental and computational results will provide a detailed microscopic picture of diffusive motion in these nanostructures over a wide range of length and time scales, and ultimately will contribute to the design, synthesis, and processing of new materials with useful properties. The educational and outreach component of the project consists of the development of a new undergraduate/graduate level course in the practical application of x-ray diffraction methods, providing meaningful research opportunities for undergraduate and graduate students, and an outreach program targeted at junior and senior level high school students by participating in the Delaware Science Olympiad. Technical Summary While solid-state diffusion (SSD) and new phase formation (NPF) in multicomponent bulk and two-dimensional (2D) thin film systems has been studied for many years, much less is known about SSD and NPF in zero-dimensional (0D) and one-dimensional (1D) diffusion couples. The research component of this project has been designed to address this issue through a systematic experimental and computational study of the structural evolution in 0D core/shell nanoparticles and 1D multilayered nanowires. In particular, the structural evolution of chemically prepared 0D and electrochemically prepared 1D diffusion couples will be experimentally studied using both optical pump/x-ray probe ultrafast time-resolved x-ray diffraction (TRXRD) and conventional high temperature x-ray powder diffraction (cXRD) measurement techniques. These experimental studies will be complemented by computational studies of SSD and NPF in model 0D and 1D diffusion couples. The experimental component of the research project will consist of pump/probe TRXRD measurements carried out using in-house facilities and facilities available at the Advanced Photon Source at Argonne National Laboratory. In both cases a Ti:sapphire laser will be used to pump the sample with an approximately 50 femtosecond optical pulse followed by an x-ray probe pulse. The optical pump leads to a very rapid increase in the same temperature, and by delaying the arrival of the x-ray pulse relative to the pump pulse temperature depend x-ray diffraction patterns can be acquired with a time resolution of 10's - 100's of femtoseconds over time periods from 10's to 100's of nanoseconds. Conventional high temperature powder x-ray diffraction measurements (cXRD) will allow complementary structural measurements to be carried out over much longer time periods (although with limited time resolution). The computational component of the research project will consist of modeling SSD and NPF in 0D and 1D diffusion couples by combining density functional theory calculations with cluster expansion methods and kinetic Monte Carlo simulations. Computational studies of this kind are of particular importance because they are applicable at the short length scales over which continuum models break down. These experimental and computational studies will provide a detailed microscopic picture of SSD and NPF in 0D and 1D nanostructures over both very short and very long time scales, and ultimately will contribute to the design, synthesis, and processing of new materials with useful properties.
原子的扩散运动会导致固体物理性质随时间的变化,从简单的组成变化到新结构的形成和生长。随着样本量的减少,这些变化的影响(可能有利也可能不利)在较低温度、较短时间和较小长度尺度下变得显著。因此,对这些过程的起源和后果的基本理解在纳米结构材料中特别重要。该项目的研究部分包括在纳米尺度上对纳米样品中扩散原子运动的实验和计算研究。实验和计算结果的分析将提供一个详细的微观图片的扩散运动在这些纳米结构在很宽的范围内的长度和时间尺度,并最终将有助于设计,合成和加工的新材料与有用的性能。该项目的教育和推广部分包括开发一个新的本科生/研究生水平的课程,在X射线衍射方法的实际应用中,为本科生和研究生提供有意义的研究机会,以及针对初中和高中学生参加特拉华州科学奥林匹克的推广计划。虽然多组分块体和二维(2D)薄膜系统中的固态扩散(SSD)和新相形成(NPF)已经研究了多年,但关于零维(0 D)和一维(1D)扩散偶中的SSD和NPF知之甚少。该项目的研究部分旨在通过对0 D核/壳纳米颗粒和1D多层纳米线的结构演变进行系统的实验和计算研究来解决这个问题。特别是,化学制备的0 D和电化学制备的1D扩散偶的结构演变将使用光泵/X射线探针超快时间分辨X射线衍射(TRXRD)和传统的高温X射线粉末衍射(cXRD)测量技术进行实验研究。这些实验研究将通过SSD和NPF在模型0 D和1D扩散偶中的计算研究来补充。该研究项目的实验部分将包括使用内部设施和阿贡国家实验室先进光子源的设施进行的泵浦/探测TRXRD测量。在这两种情况下,将使用钛:蓝宝石激光器以大约50飞秒的光脉冲泵浦样品,然后是X射线探测脉冲。光学泵浦导致相同温度的非常快速的增加,并且通过相对于泵浦脉冲延迟X射线脉冲的到达,可以在从10到100纳秒的时间段内以10到100飞秒的时间分辨率获得依赖于温度的X射线衍射图案。传统的高温粉末X射线衍射测量(cXRD)将允许在更长的时间段内进行互补结构测量(尽管具有有限的时间分辨率)。该研究项目的计算部分将包括通过将密度泛函理论计算与簇展开方法和动力学蒙特卡罗模拟相结合,在0 D和1D扩散偶中建模SSD和NPF。这种计算研究是特别重要的,因为它们适用于短的长度尺度上的连续模型打破。这些实验和计算研究将在非常短和非常长的时间尺度上提供0 D和1D纳米结构中SSD和NPF的详细微观图像,并最终将有助于设计,合成和加工具有有用特性的新材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tim Mueller其他文献
Machine learning for alloys
用于合金的机器学习
- DOI:
10.1038/s41578-021-00340-w - 发表时间:
2021-07-20 - 期刊:
- 影响因子:86.200
- 作者:
Gus L. W. Hart;Tim Mueller;Cormac Toher;Stefano Curtarolo - 通讯作者:
Stefano Curtarolo
Isovolumetric synthesis of chromium carbide for selective laser reaction sintering (SLRS)
用于选择性激光反应烧结(SLRS)的等容合成碳化铬
- DOI:
10.1016/j.ijrmhm.2019.05.013 - 发表时间:
2019 - 期刊:
- 影响因子:3.6
- 作者:
Adam B. Peters;Dajie Zhang;Michael C. Brupbacher;Alberto Hernandez;D. Nagle;Tim Mueller;J. Spicer - 通讯作者:
J. Spicer
Ab initio determination of structure-property relationships in alloy nanoparticles
- DOI:
10.1103/physrevb.86.144201 - 发表时间:
2012-10 - 期刊:
- 影响因子:3.7
- 作者:
Tim Mueller - 通讯作者:
Tim Mueller
Cluster Expansion Framework for the Sr(Ti1–xFex)O3–x/2 (0 < x < 1) Mixed Ionic Electronic Conductor: Properties Based on Realistic Configurations
Sr(Ti1–xFex)O3–x/2 (0 < x < 1) 混合离子电子导体的团簇扩展框架:基于实际配置的特性
- DOI:
10.1021/acs.chemmater.8b04285 - 发表时间:
2019 - 期刊:
- 影响因子:8.6
- 作者:
B. Ouyang;T. Chakraborty;Namhoon Kim;N. Perry;Tim Mueller;N. Aluru;E. Ertekin - 通讯作者:
E. Ertekin
Materials cartography: A forward-looking perspective on materials representation and devising better maps
材料制图:材料表示和设计更好地图的前瞻性视角
- DOI:
10.1063/5.0149804 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Steven B. Torrisi;M. Bazant;Alexander E. Cohen;Min Gee Cho;J. Hummelshøj;Linda Hung;Gauravi Kamat;A. Khajeh;Adeesh Kolluru;Xiangyun Lei;Handong Ling;Joseph H. Montoya;Tim Mueller;Aini Palizhati;Benjamin A. Paren;Brandon Phan;J. Pietryga;Elodie Sandraz;D. Schweigert;Yang Shao;Amalie Trewartha;Ruijie Zhu;D. Zhuang;Shijing Sun - 通讯作者:
Shijing Sun
Tim Mueller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tim Mueller', 18)}}的其他基金
CAREER:Predicting the Surface Structures of Crystalline Materials
职业:预测晶体材料的表面结构
- 批准号:
1352373 - 财政年份:2014
- 资助金额:
$ 10.27万 - 项目类别:
Continuing Grant
DMREF: Design of Nanoscale Alloy Catalysts from First Principles
DMREF:从第一原理设计纳米合金催化剂
- 批准号:
1437396 - 财政年份:2014
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134747 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Continuing Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
- 批准号:
2240418 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246686 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
Collaborative Research: Enhancing Chemoselectivity and Efficiency Through Control of Axial Coordination in Rh(II) Complexes: An Experimental and Computational Approach
合作研究:通过控制 Rh(II) 配合物的轴向配位提高化学选择性和效率:实验和计算方法
- 批准号:
2247836 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
- 批准号:
2307887 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246687 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant