DMREF: Design of Nanoscale Alloy Catalysts from First Principles

DMREF:从第一原理设计纳米合金催化剂

基本信息

  • 批准号:
    1437396
  • 负责人:
  • 金额:
    $ 104.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Tim Mueller and Chao Wang of Johns Hopkins University are supported by an award funded by the Division of Chemistry in the Designing Materials to Revolutionize and Engineer our Future (DMREF) program to develop a way to rationally design new alloy nanoparticle catalysts. Alloy nanoparticles are promising materials for use as advanced catalysts that increase the energy efficiency of chemical processes at relatively low cost. It is possible to modify the performance of alloy nanoparticle catalysts by adjusting their size, shape, atomic structure, and chemical composition. The research approach used by Mueller and Wang takes advantage of this flexibility. They create computational models that are able to accurately predict how the conditions under which nanoparticles are made affect their catalytic performance. These models are refined and validated by iterative comparisons with experimental results. As a proof of concept, this approach is being used to design catalysts that facilitate the conversion of carbon dioxide into hydrocarbon fuels. The conversion of carbon dioxide into fuels could simultaneously increase global fuel supply and reduce the amount of carbon dioxide in the atmosphere; but it is not yet economically viable due to the lack of suitable catalysts. This research is integrated with a comprehensive educational outreach program that includes research opportunities for a female high school student, a workshop on energy technologies, and a new course on renewable energy technologies at Johns Hopkins University. This project has two primary thrusts. In the first, the researchers are developing a predictive model that relates synthesis conditions to nanoparticle structure. To accomplish this, computational models based on cluster expansions are trained on ab-initio data and used to predict the atomic structures of alloy nanoparticles. The predicted structures are then compared to the experimentally-determined structural characteristics of monodisperse and homogeneous alloy nanoparticles created from organic solution synthesis. The computational and experimental approaches are iteratively refined until they are consistent, resulting in a model with strong predictive power. In the second thrust, the researchers are developing and validating a predictive model that relates nanoparticle structure to catalytic properties. Density functional theory is used to calculate the binding energies of key intermediate adsorbates on the surfaces of nanoparticles, and these energies are used in the computational hydrogen electrode model to calculate catalytic properties of the alloy nanoparticles. To iteratively refine the computational models, computational predictions for nanoparticles of different sizes, compositions, and surface structures are compared to experimental catalytic and spectroscopic studies. To demonstrate and validate the effectiveness of this approach, the researchers are designing and testing Cu-alloy nanoparticle catalysts for electrochemical CO2 reduction.
约翰霍普金斯大学的Tim Mueller和Chao Wang获得了由化学部资助的设计材料革命和工程未来(DMREF)计划的奖项,以开发合理设计新合金纳米颗粒催化剂的方法。 合金纳米颗粒是用作先进催化剂的有前景的材料,其以相对低的成本提高化学过程的能量效率。 可以通过调整合金纳米颗粒催化剂的尺寸、形状、原子结构和化学组成来改变其性能。 Mueller和Wang使用的研究方法利用了这种灵活性。 他们创建的计算模型能够准确预测纳米颗粒的制造条件如何影响其催化性能。 通过与实验结果的迭代比较,对这些模型进行了改进和验证。 作为概念验证,这种方法被用于设计促进二氧化碳转化为碳氢化合物燃料的催化剂。 将二氧化碳转化为燃料可以同时增加全球燃料供应和减少大气中的二氧化碳含量;但由于缺乏合适的催化剂,这在经济上尚不可行。 这项研究与一个全面的教育推广计划相结合,该计划包括为一名女高中生提供研究机会,举办能源技术研讨会,以及在约翰霍普金斯大学开设可再生能源技术新课程。该项目有两个主要目标。 首先,研究人员正在开发一种预测模型,将合成条件与纳米颗粒结构联系起来。为了实现这一点,基于簇展开的计算模型在从头算数据上进行训练,并用于预测合金纳米颗粒的原子结构。然后将预测的结构与实验确定的由有机溶液合成产生的单分散和均匀的合金纳米颗粒的结构特征进行比较。计算和实验方法被迭代地改进,直到它们是一致的,从而产生具有强大预测能力的模型。 在第二个方面,研究人员正在开发和验证一种将纳米颗粒结构与催化性能联系起来的预测模型。采用密度泛函理论计算了纳米颗粒表面关键中间吸附物的结合能,并将这些结合能用于计算氢电极模型,计算合金纳米颗粒的催化性能。为了迭代地改进计算模型,将不同尺寸、组成和表面结构的纳米颗粒的计算预测与实验催化和光谱研究进行比较。 为了证明和验证这种方法的有效性,研究人员正在设计和测试用于电化学CO2还原的铜合金纳米颗粒催化剂。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tim Mueller其他文献

Machine learning for alloys
用于合金的机器学习
  • DOI:
    10.1038/s41578-021-00340-w
  • 发表时间:
    2021-07-20
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Gus L. W. Hart;Tim Mueller;Cormac Toher;Stefano Curtarolo
  • 通讯作者:
    Stefano Curtarolo
Isovolumetric synthesis of chromium carbide for selective laser reaction sintering (SLRS)
用于选择性激光反应烧结(SLRS)的等容合成碳化铬
Ab initio determination of structure-property relationships in alloy nanoparticles
  • DOI:
    10.1103/physrevb.86.144201
  • 发表时间:
    2012-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tim Mueller
  • 通讯作者:
    Tim Mueller
Cluster Expansion Framework for the Sr(Ti1–xFex)O3–x/2 (0 < x < 1) Mixed Ionic Electronic Conductor: Properties Based on Realistic Configurations
Sr(Ti1–xFex)O3–x/2 (0 < x < 1) 混合离子电子导体的团簇扩展框架:基于实际配置的特性
  • DOI:
    10.1021/acs.chemmater.8b04285
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    B. Ouyang;T. Chakraborty;Namhoon Kim;N. Perry;Tim Mueller;N. Aluru;E. Ertekin
  • 通讯作者:
    E. Ertekin
Materials cartography: A forward-looking perspective on materials representation and devising better maps
材料制图:材料表示和设计更好地图的前瞻性视角
  • DOI:
    10.1063/5.0149804
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steven B. Torrisi;M. Bazant;Alexander E. Cohen;Min Gee Cho;J. Hummelshøj;Linda Hung;Gauravi Kamat;A. Khajeh;Adeesh Kolluru;Xiangyun Lei;Handong Ling;Joseph H. Montoya;Tim Mueller;Aini Palizhati;Benjamin A. Paren;Brandon Phan;J. Pietryga;Elodie Sandraz;D. Schweigert;Yang Shao;Amalie Trewartha;Ruijie Zhu;D. Zhuang;Shijing Sun
  • 通讯作者:
    Shijing Sun

Tim Mueller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tim Mueller', 18)}}的其他基金

CAREER:Predicting the Surface Structures of Crystalline Materials
职业:预测晶体材料的表面结构
  • 批准号:
    1352373
  • 财政年份:
    2014
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental and Computational Studies of Solid-State Diffusion and New Phase Formation in Bimetallic Nanostructures
合作研究:双金属纳米结构中固态扩散和新相形成的实验和计算研究
  • 批准号:
    1409765
  • 财政年份:
    2014
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Impact of MRI contrast agent design on nanoscale interactions with neutrophils and platelets
职业:MRI 造影剂设计对中性粒细胞和血小板纳米级相互作用的影响
  • 批准号:
    2339015
  • 财政年份:
    2024
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Standard Grant
Property prediction and functional design of quantified non-integer dimensional nanoscale materials
量化非整数维纳米材料的性能预测和功能设计
  • 批准号:
    23K04544
  • 财政年份:
    2023
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
  • 批准号:
    2323317
  • 财政年份:
    2023
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Continuing Grant
Design and in situ Characterization of High-Surface Area Metallic and Bimetallic Nanoscale Catalysts
高比表面积金属和双金属纳米催化剂的设计和原位表征
  • 批准号:
    RGPIN-2020-05418
  • 财政年份:
    2022
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
  • 批准号:
    RGPIN-2021-02544
  • 财政年份:
    2022
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Discovery Grants Program - Individual
Vibration minimized trajectory design for data driven control in nanoscale servo
纳米级伺服数据驱动控制的振动最小化轨迹设计
  • 批准号:
    22K04149
  • 财政年份:
    2022
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of precision polymers by acoustic levitation for nanoscale gas sensing in medical diagnosis
声悬浮精密聚合物设计用于医疗诊断中的纳米级气体传感
  • 批准号:
    2825136
  • 财政年份:
    2022
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Studentship
Design and in situ Characterization of High-Surface Area Metallic and Bimetallic Nanoscale Catalysts
高比表面积金属和双金属纳米催化剂的设计和原位表征
  • 批准号:
    RGPIN-2020-05418
  • 财政年份:
    2021
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nanoscale Characterization and Aim-Specific Design of Amorphous Materials
非晶材料的纳米级表征和特定目标设计
  • 批准号:
    RGPIN-2021-02544
  • 财政年份:
    2021
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Discovery Grants Program - Individual
Design of nanoscale light-matter interactions and nonlinear optical effects for applications in quantum technology
量子技术应用中的纳米级光与物质相互作用和非线性光学效应的设计
  • 批准号:
    2611785
  • 财政年份:
    2021
  • 资助金额:
    $ 104.68万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了