CAREER:Predicting the Surface Structures of Crystalline Materials
职业:预测晶体材料的表面结构
基本信息
- 批准号:1352373
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-03-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis CAREER award supports the development and application of machine learning and data mining methods to predict the surface structures of crystalline materials in a variety of chemical environments. The PI will develop a three-step process which is designed to minimize the computational expense of predicting surface structures by maximizing the re-use of existing data. In the first step, evolutionary algorithms will be used to develop a re-usable library of likely surface reconstructions for bulk structure types. In the second step a combination of evolutionary algorithms and data mining methods will be developed to determine the most likely surface structures for a particular material surface. In the third step, ab-initio calculations and cluster expansions will be used to identify the particular surface structures with the lowest energy. The structure prediction process will be developed, validated, and applied to three technologically important systems: perovskite-structured oxides, Au-Pd alloys, and spinel-structured oxides. The research will be integrated with an educational outreach program that is designed to strengthen the pipeline of researchers who have both the interest and ability to discover and design new materials through computational research. At the elementary school level, the PI has volunteered to partner with a master teacher at a majority-minority, low-income Baltimore City public school to share scientific knowledge, help construct an effective curriculum, and design a hands-on exercise intended to educate and excite students about STEM activities. At the middle school level, the PI will teach computer programming skills to Baltimore City students who are participating in a VEX robotics competition. At the high school level, a female student from a nearby high school will participate in the research project as member of the research team. The PI will work with the graduate student to develop an online tutorial that covers fundamental topics in materials surface science, and elements of this tutorial will be integrated into the core curriculum of the Department of Materials Science and Engineering at Johns Hopkins University.NONTECHNICAL SUMMARYThis CAREER award supports the development and application of advanced computational and data mining methods to predict how atoms are arranged on the surfaces of materials. The ability to use computers to predict the properties of material surfaces will facilitate the design of new materials for a wide range of technologies including batteries, catalysts, and sensors. However before a property of a surface can be predicted, it is first necessary to predict the atomic structure, or how the atoms are arranged, on the surface. The PI will address this challenging problem by developing a method to accurately predict material surface structures with low computational cost. This will be accomplished by combining a variety of computational tools in a way that leverages existing knowledge about the surface structures to predict the surface structure of a new material. The method developed in this research will be used to predict the surface structures of three representative classes of materials that were chosen for their importance in technologies such as batteries and catalysts. The research will be integrated with an educational outreach program that is designed to strengthen the pipeline of researchers who have both the interest and ability to use computers to discover and design new materials. At the elementary school level, the PI has volunteered to partner with a master teacher at a majority-minority, low-income Baltimore City public school to share scientific knowledge, help construct an effective curriculum, and design a hands-on exercise intended to educate and excite students about science and engineering. At the middle school level, the PI will teach computer programming skills to Baltimore City students who are participating in a robotics competition. At the high school level, a female student from a nearby high school will participate in the research project as member of the research team. The PI will work with the graduate student to develop an online tutorial that covers fundamental topics in materials surface science, and elements of this tutorial will be integrated into the core curriculum of the Department of Materials Science and Engineering at Johns Hopkins University.
该职业奖支持机器学习和数据挖掘方法的开发和应用,以预测各种化学环境中晶体材料的表面结构。 PI将开发一个三步流程,旨在通过最大限度地重复使用现有数据来最大限度地减少预测表面结构的计算费用。 在第一步中,进化算法将被用来开发一个可重复使用的图书馆可能的表面重建散装结构类型。 在第二步中,将开发进化算法和数据挖掘方法的组合,以确定特定材料表面最可能的表面结构。 在第三步中,从头计算和集群扩展将被用来确定具有最低能量的特定表面结构。 结构预测过程将被开发,验证,并应用于三个技术上重要的系统:钙钛矿结构的氧化物,金钯合金,尖晶石结构的氧化物。 这项研究将与一个教育推广计划相结合,该计划旨在加强那些有兴趣和能力通过计算研究发现和设计新材料的研究人员的渠道。 在小学一级,PI自愿与一位主要少数民族,低收入巴尔的摩市公立学校的大师级教师合作,分享科学知识,帮助构建有效的课程,并设计一个旨在教育和激发学生STEM活动的实践练习。 在中学阶段,PI将向参加VEX机器人比赛的巴尔的摩市学生教授计算机编程技能。 在高中一级,附近一所高中的一名女生将作为研究小组成员参加研究项目。 PI将与研究生合作开发一个在线教程,涵盖材料表面科学的基本主题,本教程的内容将整合到约翰·霍普金斯大学材料科学与工程系的核心课程中。非技术总结该职业奖支持高级计算和数据挖掘方法的开发和应用,以预测原子如何排列在表面上的材料。 使用计算机预测材料表面特性的能力将有助于为包括电池、催化剂和传感器在内的各种技术设计新材料。 然而,在预测表面的性质之前,首先需要预测表面上的原子结构或原子如何排列。 PI将通过开发一种方法来解决这个具有挑战性的问题,以低计算成本准确预测材料表面结构。 这将通过结合各种计算工具来实现,利用现有的表面结构知识来预测新材料的表面结构。 本研究开发的方法将用于预测三种代表性材料的表面结构,这些材料因其在电池和催化剂等技术中的重要性而被选择。这项研究将与一个教育推广计划相结合,该计划旨在加强那些有兴趣和能力使用计算机发现和设计新材料的研究人员的渠道。 在小学一级,PI自愿与一位主要少数民族,低收入巴尔的摩市公立学校的硕士教师合作,分享科学知识,帮助构建有效的课程,并设计一个旨在教育和激发学生对科学和工程的动手练习。 在中学阶段,PI将向参加机器人比赛的巴尔的摩市学生教授计算机编程技能。 在高中一级,附近一所高中的一名女生将作为研究小组成员参加研究项目。 PI将与研究生合作开发一个涵盖材料表面科学基本主题的在线教程,本教程的内容将纳入约翰霍普金斯大学材料科学与工程系的核心课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tim Mueller其他文献
Machine learning for alloys
用于合金的机器学习
- DOI:
10.1038/s41578-021-00340-w - 发表时间:
2021-07-20 - 期刊:
- 影响因子:86.200
- 作者:
Gus L. W. Hart;Tim Mueller;Cormac Toher;Stefano Curtarolo - 通讯作者:
Stefano Curtarolo
Isovolumetric synthesis of chromium carbide for selective laser reaction sintering (SLRS)
用于选择性激光反应烧结(SLRS)的等容合成碳化铬
- DOI:
10.1016/j.ijrmhm.2019.05.013 - 发表时间:
2019 - 期刊:
- 影响因子:3.6
- 作者:
Adam B. Peters;Dajie Zhang;Michael C. Brupbacher;Alberto Hernandez;D. Nagle;Tim Mueller;J. Spicer - 通讯作者:
J. Spicer
Ab initio determination of structure-property relationships in alloy nanoparticles
- DOI:
10.1103/physrevb.86.144201 - 发表时间:
2012-10 - 期刊:
- 影响因子:3.7
- 作者:
Tim Mueller - 通讯作者:
Tim Mueller
Cluster Expansion Framework for the Sr(Ti1–xFex)O3–x/2 (0 < x < 1) Mixed Ionic Electronic Conductor: Properties Based on Realistic Configurations
Sr(Ti1–xFex)O3–x/2 (0 < x < 1) 混合离子电子导体的团簇扩展框架:基于实际配置的特性
- DOI:
10.1021/acs.chemmater.8b04285 - 发表时间:
2019 - 期刊:
- 影响因子:8.6
- 作者:
B. Ouyang;T. Chakraborty;Namhoon Kim;N. Perry;Tim Mueller;N. Aluru;E. Ertekin - 通讯作者:
E. Ertekin
Materials cartography: A forward-looking perspective on materials representation and devising better maps
材料制图:材料表示和设计更好地图的前瞻性视角
- DOI:
10.1063/5.0149804 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Steven B. Torrisi;M. Bazant;Alexander E. Cohen;Min Gee Cho;J. Hummelshøj;Linda Hung;Gauravi Kamat;A. Khajeh;Adeesh Kolluru;Xiangyun Lei;Handong Ling;Joseph H. Montoya;Tim Mueller;Aini Palizhati;Benjamin A. Paren;Brandon Phan;J. Pietryga;Elodie Sandraz;D. Schweigert;Yang Shao;Amalie Trewartha;Ruijie Zhu;D. Zhuang;Shijing Sun - 通讯作者:
Shijing Sun
Tim Mueller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tim Mueller', 18)}}的其他基金
DMREF: Design of Nanoscale Alloy Catalysts from First Principles
DMREF:从第一原理设计纳米合金催化剂
- 批准号:
1437396 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and Computational Studies of Solid-State Diffusion and New Phase Formation in Bimetallic Nanostructures
合作研究:双金属纳米结构中固态扩散和新相形成的实验和计算研究
- 批准号:
1409765 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Importance of NK activity and leukemia cell surface antigens in maintaining remission and predicting relapse of acute myeloid leukemia
NK 活性和白血病细胞表面抗原在急性髓性白血病维持缓解和预测复发中的重要性
- 批准号:
21K16253 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Predicting mass loadings of veterinary drugs discharged into surface waters in regions with active livestock farming
预测畜牧业活跃地区排入地表水的兽药质量负荷
- 批准号:
19K20470 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A cross-disciplinary soil-proteomics and modelling approach for predicting switches between hydrophilic and hydrophobic soil surface responses
一种跨学科的土壤蛋白质组学和建模方法,用于预测亲水性和疏水性土壤表面响应之间的切换
- 批准号:
NE/K004638/1 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Collaborative Research: Decoding & Predicting Greenland's Surface Melt History & Future with Observations, Regional Atmospheric Modeling and GCMs
合作研究:解码
- 批准号:
1304849 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Decoding and Predicting Greenland's Surface Melt History & Future with Observations, Regional Atmospheric Modeling and GCMs
合作研究:解码和预测格陵兰岛表面融化历史
- 批准号:
1304637 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Decoding and Predicting Greenland's Surface Melt History and Future with Observations, Regional Atmospheric Modeling, and GCMs
合作研究:通过观测、区域大气建模和 GCM 解码和预测格陵兰岛表面融化的历史和未来
- 批准号:
1304780 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
A cross-disciplinary soil-proteomics and modelling approach for predicting switches between hydrophilic and hydrophobic soil surface responses
一种跨学科的土壤蛋白质组学和建模方法,用于预测亲水性和疏水性土壤表面响应之间的切换
- 批准号:
NE/K004212/1 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Collaborative Research: Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs
合作研究:解码
- 批准号:
1043580 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs
合作研究:解码
- 批准号:
1043611 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs
合作研究:解码
- 批准号:
1235231 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant