Elucidating the Thermodynamic and Kinetic Properties of High Temperature Materials with First-Principles Statistical Mechanics
用第一性原理统计力学阐明高温材料的热力学和动力学性质
基本信息
- 批准号:1410242
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY Remarkable levels of sophistication have been reached in linking properties of a given material to its microstructure, crystal structure and electronic structure. A substantially bigger challenge, though, is predicting the dynamic evolution of a material taken out of equilibrium and determining what external stimuli must be imposed to shepherd the material into a desired end state. The desirable properties from a particular chemistry are usually manifested in metastable crystal structures and microstructures rather than in the true equilibrium state of that chemistry. In many applications it is necessary to know how a material in a particular state will evolve over time either because it is metastable or unstable, such as in high temperature applications, or due to changing boundary conditions, as in electrochemical energy storage applications.This award supports computational research and education to develop highly automated statistical mechanical software tools that will be used to predict materials properties and greatly enhance the ability to design materials for high temperature and non-equilibrium applications from first principles. Areas where such tools will prove invaluable include the design of new (i) structural materials for aerospace applications and large-scale power generation plants, (ii) electrode and electrolyte materials for electrochemical energy storage, (iii) materials for thermoelectric applications and (iv) materials for shape memory applications. The project will also involve the education and training of graduate students in computational materials science, a field that is increasingly recognized as invaluable in the design and rapid implementation of new materials.TECHNICAL SUMMARY This award supports research and educational activities aimed at extending the existing thermodynamic and kinetic foundations that underpin phenomenological descriptions of non-equilibrium processes in the solid state. This will be realized by two activities: (i) the development of statistical mechanical computational tools to automate the calculation of a wide variety of thermodynamic and kinetic properties that are essential in the description of materials evolving out of equilibrium and (ii) the development and application of new statistical mechanical theoretical methods to enable the prediction of high temperature properties of multi-component crystalline solids. A deep understanding of many high temperature materials and non-equilibrium processes is hampered by a lack of not only quantitative thermodynamic, kinetic and mechanical data, but also a lack of knowledge about qualitative trends in this data. Furthermore, a large class of technologically important high temperature materials cannot be adequately described and understood with current statistical mechanical methods. This research activity will result in highly automated computational statistical mechanical tools to predict free energies and transport coefficients as a function of concentration. Such tools will provide new knowledge about the dependence of a wide variety of materials properties on chemistry and crystal structure. The theoretical focus on high temperature phases will generate fundamental new insights about the vibrational stabilization mechanisms, atomic hop mechanisms and mechanical properties of a large and important class of poorly understood materials used in high temperature applications. The project will also involve the education and training of graduate students in computational materials science, a field that is increasingly recognized as invaluable in the design and rapid implementation of new materials.
在将给定材料的性质与其微观结构、晶体结构和电子结构联系起来方面已经达到了显著的复杂程度。然而,一个更大的挑战是预测材料从平衡状态中的动态演变,并确定必须施加什么外部刺激才能将材料引导到所需的最终状态。特定化学物质的理想性质通常表现在亚稳晶体结构和微观结构中,而不是表现在该化学物质的真正平衡状态中。在许多应用中,有必要知道处于特定状态的材料将如何随时间演变,因为它是亚稳态或不稳定的,例如在高温应用中,或者由于边界条件的变化,该奖项支持计算研究和教育,以开发高度自动化的统计力学软件工具,这些工具将用于预测材料性能,提高从第一原理设计高温和非平衡应用材料的能力。这些工具将被证明具有宝贵价值的领域包括设计新的(一)用于航空航天应用和大规模发电厂的结构材料,(二)用于电化学能量储存的电极和电解质材料,(三)用于热电应用的材料和(四)用于形状记忆应用的材料。该项目还将涉及计算材料科学研究生的教育和培训,这一领域在新材料的设计和快速实现方面越来越被认为是非常宝贵的。技术概要该奖项支持旨在扩展现有热力学和动力学基础的研究和教育活动,这些基础支撑着固态非平衡过程的现象学描述。这将通过两项活动来实现:(一)统计力学计算工具的开发,以自动计算各种热力学和动力学性质,这些性质在描述脱离平衡的材料中至关重要;(二)新的统计力学理论方法的开发和应用,以预测多组分结晶固体的高温性质。对许多高温材料和非平衡过程的深入理解不仅受到缺乏定量热力学,动力学和力学数据的阻碍,而且还缺乏对这些数据中定性趋势的了解。此外,一大类技术上重要的高温材料不能用当前的统计力学方法充分描述和理解。这项研究活动将导致高度自动化的计算统计机械工具,以预测自由能和传输系数作为浓度的函数。这些工具将提供有关各种材料性质对化学和晶体结构的依赖性的新知识。对高温相的理论关注将产生关于振动稳定机制,原子跳跃机制和高温应用中使用的大量且重要的一类知之甚少的材料的机械性能的基本新见解。 该项目还将涉及计算材料科学研究生的教育和培训,这一领域越来越被认为是设计和快速实施新材料的宝贵领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anton Van der Ven其他文献
The Role of Electronic Properties in the Electrochemical Behavior of Intercalation Compounds From a First Principles Vantage Point
从第一原理的角度看电子特性在插层化合物电化学行为中的作用
- DOI:
10.1007/978-0-387-92675-9_2 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Anton Van der Ven;G. Ceder - 通讯作者:
G. Ceder
A Joint Theoretical and Experimental Study of Phase Equilibria and Evolution in Pt-Doped Calcium Titanate under Redox Conditions
氧化还原条件下铂掺杂钛酸钙相平衡和演化的联合理论与实验研究
- DOI:
10.1021/cm5022239 - 发表时间:
2015 - 期刊:
- 影响因子:8.6
- 作者:
Baihai Li;M. Katz;Y. Duan;Xianfeng Du;Kui Zhang;L. Chen;Anton Van der Ven;G. Graham;X. Pan - 通讯作者:
X. Pan
Solid electrolytes redefine ion conduction
固体电解质重新定义离子传导
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:56.9
- 作者:
Anton Van der Ven - 通讯作者:
Anton Van der Ven
Elastic properties and stress-temperature phase diagrams of high-temperature phases with low-temperature lattice instabilities
具有低温晶格不稳定性的高温相的弹性性能和应力-温度相图
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
John C. Thomas;Anton Van der Ven - 通讯作者:
Anton Van der Ven
Ti- and Zr-based metal-air batteries
钛基和锆基金属空气电池
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Anton Van der Ven;B. Puchala;T. Nagase - 通讯作者:
T. Nagase
Anton Van der Ven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anton Van der Ven', 18)}}的其他基金
Elements: Software to enable first-principles multi-scale simulations
Elements:支持第一原理多尺度模拟的软件
- 批准号:
2311370 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DMREF/GOALI: Integrated Framework for Design of Alloy-Oxide Structures
DMREF/GOALI:合金氧化物结构设计集成框架
- 批准号:
1729166 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SI2-SSE: Automated Statistical Mechanics for the First-Principles Prediction of Finite Temperature Properties in Hybrid Organic-Inorganic Crystals
SI2-SSE:用于有机-无机杂化晶体有限温度特性第一性原理预测的自动统计力学
- 批准号:
1642433 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DMREF: Integrated Computational Framework for Designing Dynamically Controlled Alloy-Oxide Heterostructures
DMREF:用于设计动态控制合金氧化物异质结构的集成计算框架
- 批准号:
1436154 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: First-Principles Thermodynamics and Kinetics of Multi-Component Solids
职业:多组分固体的第一原理热力学和动力学
- 批准号:
0748516 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Rapid Kinetic and Thermodynamic Determination Using Automated Flow
使用自动流程进行快速动力学和热力学测定
- 批准号:
2882559 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Simultaneous overcoming thermodynamic and kinetic constraints of catalytic reactions by microwave pulse irradiation
微波脉冲辐照同时克服催化反应的热力学和动力学约束
- 批准号:
23K17840 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Elements: Data Driven Autonomous Thermodynamic and Kinetic Model Builder for Microstructural Simulations
元素:用于微观结构模拟的数据驱动自主热力学和动力学模型构建器
- 批准号:
2209423 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Understanding and Predicting Thermodynamic and Kinetic Stability in Pharmaceutical Hydrates
了解和预测药物水合物的热力学和动力学稳定性
- 批准号:
2784601 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Studentship
Understanding the Mechanism of CO2 Insertion into Metal-Hydrides: Breaking Scaling Relationships Between Kinetic and Thermodynamic Hydricity
了解 CO2 插入金属氢化物的机制:打破动力学和热力学水度之间的比例关系
- 批准号:
568014-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Postdoctoral Fellowships
CAREER: CAS: Understanding How Catalyst Modification Impacts Performance Thermodynamic and Kinetic Parameters Pertinent to Catalytic Hydrogenation of Polar Carbonyl Bonds
职业:CAS:了解催化剂改性如何影响与极性羰基键催化氢化相关的性能热力学和动力学参数
- 批准号:
1945646 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Mechanics and Physics at the Boundary Between Solid and Fluid: Probing the Thermodynamic and Kinetic Properties of Gels
职业:固体与流体边界的力学和物理:探索凝胶的热力学和动力学性质
- 批准号:
1935154 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Statistically Sequence-Controlled Pharmaceutical Polymers, and Studies of Their Molecular Thermodynamic and Kinetic Properties
统计序列控制的药用聚合物及其分子热力学和动力学性质的研究
- 批准号:
1803968 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Mechanics and Physics at the Boundary Between Solid and Fluid: Probing the Thermodynamic and Kinetic Properties of Gels
职业:固体与流体边界的力学和物理:探索凝胶的热力学和动力学性质
- 批准号:
1554326 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant