Polynomial inclusions: open problems and potential applications

多项式包含:开放问题和潜在应用

基本信息

  • 批准号:
    1410273
  • 负责人:
  • 金额:
    $ 19.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to study a new geometric concept, polynomial inclusions, and their applications. It was first discovered by Newton that an interior point in a hollow ellipsoid feels no gravitational force, and that for a filled ellipsoid the gravity inside is a quadratic function of the position. Polynomial inclusions are a generalization of ellipsoids in terms of Newtonian potential. An interior point in a hollow polynomial inclusion feels a gravitational force that is a polynomial of the position. Polynomial inclusions have proven to be useful for many modeling and design problems. Specifically, the following applications pertaining to polynomial inclusions will be investigated: (i) predictive models for design of synthetic complex materials, (ii) optimal structures for fusion reactors and minimum field concentration, and (iii) inverse source problem for medical and geological imaging. This research project will be integrated with educational and outreach activities such as one-to-one mentoring, educational module development, training graduate students, and fostering interdisciplinary collaborations. The Newtonian potential induced by a polynomial inclusion of degree k is precisely a polynomial of degree k inside the body. The interest in polynomial inclusions arises from that partial differential equations admit closed-form simple solutions for polynomial inclusions as for ellipsoids. The following fundamental technical problems concerning polynomial inclusions will be addressed in the project: (i) proving the existence and uniqueness of polynomial inclusions, (ii) numerically computing polynomial inclusions, (iii) explicit parametrization of polynomial inclusions and (iv) employing polynomial inclusions to solve aforementioned engineering problems. The outcomes of this project may have an impact on the classic Hilbert's sixteenth problem as well as industrial problems ranging from structural engineering, fusion designs and to imaging. The project will also strengthen the connection between the Department of Mathematics and the Department of Mechanical Aerospace Engineering at Rutgers University by means of recruiting students of diverse backgrounds into the research team.
该项目的目标是研究新的几何概念、多项式包含及其应用。牛顿首先发现,空心椭球体中的内部点感觉不到重力,而对于填充椭球体,内部点的重力是位置的二次函数。多项式包含是椭球在牛顿势方面的推广。 空心多项式包含中的内部点感受到的重力是该位置的多项式。多项式包含已被证明对于许多建模和设计问题很有用。具体来说,将研究与多项式包含物有关的以下应用:(i)合成复杂材料设计的预测模型,(ii)聚变反应堆的最佳结构和最小场集中,以及(iii)医学和地质成像的逆源问题。 该研究项目将与教育和外展活动相结合,例如一对一指导、教育模块开发、培训研究生和促进跨学科合作。由 k 次多项式包含引起的牛顿势恰好是体内 k 次多项式。对多项式包含的兴趣源于偏微分方程承认多项式包含与椭圆体一样的封闭形式简单解。该项目将解决多项式包含的以下基本技术问题:(i)证明多项式包含的存在性和唯一性,(ii)数值计算多项式包含,(iii)多项式包含的显式参数化以及(iv)利用多项式包含来解决上述工程问题。该项目的成果可能会对经典的希尔伯特第十六问题以及从结构工程、融合设计到成像等工业问题产生影响。该项目还将通过招募不同背景的学生加入研究团队,加强罗格斯大学数学系和机械航空航天工程系之间的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liping Liu其他文献

High‐grade endometrial stromal sarcoma of the endocervix: An extremely rare case report
宫颈内膜高级别子宫内膜间质肉瘤:极其罕见的病例报告
Oxidized low-density lipoprotein predicts recurrent stroke in patients with minor stroke or TIA
氧化低密度脂蛋白可预测轻微中风或 TIA 患者的复发性中风
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Anxin Wang;Jie Xu;Guojuan Chen;David Wang;S. C. Johnston;X. Meng;Jinxi Lin;Hao Li;Yibin Cao;Nan Zhang;Caiyun Ma;L. Dai;Xingquan Zhao;Liping Liu;Yongjun Wang;Yilong Wang
  • 通讯作者:
    Yilong Wang
Comparison Study on Short Circuit Capability of 1.2 kV Split-Gate MOSFET and Split-Source MOSFET with Integrated JBS Diode
1.2 kV分栅MOSFET与集成JBS二极管的分源MOSFET短路能力对比研究
Autoimmune Encephalomyelitis Mice with Experimental − / − CXCR 3 Production in γ Migration , and Reduced IFN-Severe Disease , Unaltered Leukocyte
自身免疫性脑脊髓炎小鼠实验性 - / - γ 迁移中 CXCR 3 的产生,IFN-严重疾病减少,白细胞未改变
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Ransohoff;Taofang Hu;J. DeMartino;B. Lu;C. Gerard;Liping Liu;Deren Huang;M. Matsui;Toby T. He
  • 通讯作者:
    Toby T. He
Optical and Geometrical Properties of Cirrus Clouds over the Tibetan Plateau Measured by Lidar and Radiosonde Sounding at the Summertime in 2014
2014年夏季激光雷达和无线电探空仪测量青藏高原卷云的光学和几何特性

Liping Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liping Liu', 18)}}的其他基金

Anomalous Diffusion: Physical Origins and Mathematical Analysis
反常扩散:物理起源和数学分析
  • 批准号:
    2306254
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Continuing Grant
CAREER: New Frontiers in Graph Generation
职业:图生成的新领域
  • 批准号:
    2239869
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Continuing Grant
CISE: RI: Small: Amortized Inference for Large-Scale Graphical Models
CISE:RI:小型:大规模图形模型的摊销推理
  • 批准号:
    1908617
  • 财政年份:
    2019
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
CRII: RI: Self-Attention through the Bayesian Lens
CRII:RI:贝叶斯视角下的自注意力
  • 批准号:
    1850358
  • 财政年份:
    2019
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
CAREER: Multiferroic Materials - Predictive Modeling, Multiscale Analysis, and Optimal Design
职业:多铁性材料 - 预测建模、多尺度分析和优化设计
  • 批准号:
    1351561
  • 财政年份:
    2014
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Variational Inequalities and their Applications in the Predictive Modeling of Heterogeneous Media
变分不等式及其在异质介质预测建模中的应用
  • 批准号:
    1238835
  • 财政年份:
    2012
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Variational Inequalities and their Applications in the Predictive Modeling of Heterogeneous Media
变分不等式及其在异质介质预测建模中的应用
  • 批准号:
    1101030
  • 财政年份:
    2011
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant

相似海外基金

In situ quantitative monitoring of water environment chemistry and corrosion evolution of steel matrix around typical composite inclusions under different strains
不同应变下典型复合夹杂物周围钢基体水环境化学和腐蚀演化的原位定量监测
  • 批准号:
    24K17166
  • 财政年份:
    2024
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
  • 批准号:
    2235856
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Study on zircon-hosted melt inclusions from granitoids: new approach to assess chemical evolution of magma and its application to granitoid petrogenesis.
花岗岩中锆石熔体包裹体的研究:评估岩浆化学演化的新方法及其在花岗岩岩石成因中的应用。
  • 批准号:
    22KJ2361
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Constraining nitrogen sources and recycling efficiency in hot subduction zones using fluid inclusions in mineral separates from mafic lavas
利用镁铁质熔岩矿物分离物中的流体包裹体限制热俯冲带的氮源和回收效率
  • 批准号:
    2324745
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Understanding the Fluids Trapped Inside Opaque Minerals of Overprinted Ore Deposits
了解叠印矿床的不透明矿物中截留的流体
  • 批准号:
    22KK0246
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
  • 批准号:
    2235857
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Inverse Design and Mechanics of Hybrid Filler Composites with Solid and Liquid Inclusions
固体和液体夹杂物混合填料复合材料的逆向设计和力学
  • 批准号:
    2306613
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Standard Grant
Neutral Inclusions
中性夹杂物
  • 批准号:
    2905704
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Studentship
The role and significance of vesicular structures in the formation of alpha-synuclein inclusions in multiple system atrophy.
囊泡结构在多系统萎缩中α-突触核蛋白包涵体形成中的作用和意义。
  • 批准号:
    23K06802
  • 财政年份:
    2023
  • 资助金额:
    $ 19.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechano-Instructive Material Inclusions to Direct Meniscus Repair
用于直接半月板修复的力学指导材料夹杂物
  • 批准号:
    10534807
  • 财政年份:
    2022
  • 资助金额:
    $ 19.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了