Anomalous Diffusion: Physical Origins and Mathematical Analysis

反常扩散:物理起源和数学分析

基本信息

  • 批准号:
    2306254
  • 负责人:
  • 金额:
    $ 26.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Diffusion is the physical process of particles or molecules gradually become uniformly distributed in an ambient medium, e.g., the dispersal of an ink drop in water. Anomalous diffusion refers to instances when the process deviates significantly from its usual behavior, and it manifests in two distinct ways: subdiffusion when solute particles move much slower than expected, and superdiffusion when solute particles cover larger distances in shorter timescales, exhibiting more erratic behavior. Diffusion dictates important physical properties of materials (e.g., electrical or heat conductivities) and phenomena in complex systems (e.g., human body). By studying the physical origins and mathematical intricacies of anomalous diffusions, the project will enhance the fundamental understanding of diffusion processes in diverse fields, ranging from physics and chemistry to biology and environmental science. The scientific goal is to establish the quantitative relationship between the microstructural and physical properties of the particle and ambient medium and the measurable generalized diffusivity and its scaling laws. The project will provide research training opportunities for graduate students. The investigator will consider factors that are observed to affect diffusion processes, such as anisotropy, heterogeneity, and deformability of particles, and the viscoelasticity of the medium and externally applied electromagnetic fields and aim to scale up from microscopic stochastic differential equations to macroscopic fractional differential equations, using a systematic multiscale analysis approach. The goal is to extend the classical Stokes-Einstein framework and address technical challenges related to power laws, non-standard Brownian motions, and anomalous diffusions. On a microscopic level, the project considers the complete set of multiphysics field equations governing the behavior of particles and the ambient medium. On a macroscopic level, the aim is to derive effective evolution equations for the concentration or probability distribution function of particles at different time scales. This involves coarse-graining the microscopic equation of motion and identifying distinct diffusional behaviors within different time regimes. Multiscale analysis methods are employed to uncover the mathematical and physical origins of fractional differential equations. By exploring how these equations emerge and how their solutions impact anomalous diffusions, the project will result in a deeper understanding of the underlying physical mechanism.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
扩散是颗粒或分子逐渐均匀分布在环境介质中的物理过程,例如,墨水滴在水中的扩散。异常扩散是指过程明显偏离其通常行为的情况,它以两种不同的方式表现出来:当溶质颗粒移动比预期慢得多时的亚扩散,以及当溶质颗粒在较短时间尺度内覆盖较大距离时的超扩散,表现出更不稳定的行为。 扩散决定了材料的重要物理性质(例如,电导率或热导率)和复杂系统中的现象(例如,人体)。通过研究异常扩散的物理起源和数学复杂性,该项目将加强对从物理和化学到生物学和环境科学等不同领域扩散过程的基本理解。科学目标是建立颗粒和周围介质的微观结构和物理性质与可测量的广义扩散率及其标度律之间的定量关系。该项目将为研究生提供研究培训机会。研究人员将考虑观察到影响扩散过程的因素,如颗粒的各向异性,异质性和可变形性,以及介质和外部施加的电磁场的粘弹性,并旨在从微观随机微分方程扩展到宏观分数阶微分方程,使用系统的多尺度分析方法。我们的目标是扩展经典的斯托克斯-爱因斯坦框架,并解决与幂律,非标准布朗运动和异常扩散相关的技术挑战。在微观层面上,该项目考虑了一整套控制粒子和周围介质行为的多物理场方程。在宏观层面上,目标是推导出不同时间尺度下粒子浓度或概率分布函数的有效演化方程。这涉及粗粒化的微观运动方程,并确定不同的时间制度内的不同的扩散行为。多尺度分析方法被用来揭示分数阶微分方程的数学和物理起源。通过探索这些方程是如何产生的以及它们的解如何影响异常扩散,该项目将导致对潜在物理机制的更深入理解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polynomial inclusions: Definitions, applications, and open problems
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liping Liu其他文献

High‐grade endometrial stromal sarcoma of the endocervix: An extremely rare case report
宫颈内膜高级别子宫内膜间质肉瘤:极其罕见的病例报告
Oxidized low-density lipoprotein predicts recurrent stroke in patients with minor stroke or TIA
氧化低密度脂蛋白可预测轻微中风或 TIA 患者的复发性中风
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Anxin Wang;Jie Xu;Guojuan Chen;David Wang;S. C. Johnston;X. Meng;Jinxi Lin;Hao Li;Yibin Cao;Nan Zhang;Caiyun Ma;L. Dai;Xingquan Zhao;Liping Liu;Yongjun Wang;Yilong Wang
  • 通讯作者:
    Yilong Wang
Comparison Study on Short Circuit Capability of 1.2 kV Split-Gate MOSFET and Split-Source MOSFET with Integrated JBS Diode
1.2 kV分栅MOSFET与集成JBS二极管的分源MOSFET短路能力对比研究
Autoimmune Encephalomyelitis Mice with Experimental − / − CXCR 3 Production in γ Migration , and Reduced IFN-Severe Disease , Unaltered Leukocyte
自身免疫性脑脊髓炎小鼠实验性 - / - γ 迁移中 CXCR 3 的产生,IFN-严重疾病减少,白细胞未改变
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Ransohoff;Taofang Hu;J. DeMartino;B. Lu;C. Gerard;Liping Liu;Deren Huang;M. Matsui;Toby T. He
  • 通讯作者:
    Toby T. He
Optical and Geometrical Properties of Cirrus Clouds over the Tibetan Plateau Measured by Lidar and Radiosonde Sounding at the Summertime in 2014
2014年夏季激光雷达和无线电探空仪测量青藏高原卷云的光学和几何特性

Liping Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liping Liu', 18)}}的其他基金

CAREER: New Frontiers in Graph Generation
职业:图生成的新领域
  • 批准号:
    2239869
  • 财政年份:
    2023
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Continuing Grant
CISE: RI: Small: Amortized Inference for Large-Scale Graphical Models
CISE:RI:小型:大规模图形模型的摊销推理
  • 批准号:
    1908617
  • 财政年份:
    2019
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
CRII: RI: Self-Attention through the Bayesian Lens
CRII:RI:贝叶斯视角下的自注意力
  • 批准号:
    1850358
  • 财政年份:
    2019
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
Polynomial inclusions: open problems and potential applications
多项式包含:开放问题和潜在应用
  • 批准号:
    1410273
  • 财政年份:
    2014
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
CAREER: Multiferroic Materials - Predictive Modeling, Multiscale Analysis, and Optimal Design
职业:多铁性材料 - 预测建模、多尺度分析和优化设计
  • 批准号:
    1351561
  • 财政年份:
    2014
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
Variational Inequalities and their Applications in the Predictive Modeling of Heterogeneous Media
变分不等式及其在异质介质预测建模中的应用
  • 批准号:
    1238835
  • 财政年份:
    2012
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
Variational Inequalities and their Applications in the Predictive Modeling of Heterogeneous Media
变分不等式及其在异质介质预测建模中的应用
  • 批准号:
    1101030
  • 财政年份:
    2011
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant

相似国自然基金

带drift-diffusion项的抛物型偏微分方程组的能控性与能稳性
  • 批准号:
    61573012
  • 批准年份:
    2015
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
Levy过程驱动的随机Fast-Diffusion方程的Harnack不等式及其应用
  • 批准号:
    11126079
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Physical model for limb development in the embryo: reaction-diffusion equations and gene networks
胚胎肢体发育的物理模型:反应扩散方程和基因网络
  • 批准号:
    528895-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Geometry of Physical Models Governed by Diffusion
扩散控制的物理模型的几何
  • 批准号:
    1812009
  • 财政年份:
    2018
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Continuing Grant
CAREER: PDE approaches to Physical Phenomena driven by Gravity and Diffusion
职业:偏微分方程研究重力和扩散驱动的物理现象
  • 批准号:
    1608494
  • 财政年份:
    2015
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Continuing Grant
RAPID: Role of Physical, Chemical and Diffusion Properties of 4-Methyl-cyclohexane methanol in Remediating Contaminated Water and Water Pipes
RAPID:4-甲基环己烷甲醇的物理、化学和扩散特性在修复受污染的水和水管中的作用
  • 批准号:
    1424234
  • 财政年份:
    2014
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Standard Grant
CAREER: PDE approaches to Physical Phenomena driven by Gravity and Diffusion
职业:偏微分方程研究重力和扩散驱动的物理现象
  • 批准号:
    1351898
  • 财政年份:
    2014
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Continuing Grant
Diffusion in the DAC: Probing the physical state of the Earth's inner core
DAC 中的扩散:探测地球内核的物理状态
  • 批准号:
    NE/J018945/1
  • 财政年份:
    2013
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Fellowship
Modeling moisture diffusion coupled with physical aging phenomena in thin-wall polymeric parts
模拟薄壁聚合物部件中的湿气扩散与物理老化现象
  • 批准号:
    385427-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Collaborative Research and Development Grants
Modeling moisture diffusion coupled with physical aging phenomena in thin-wall polymeric parts
模拟薄壁聚合物部件中的湿气扩散与物理老化现象
  • 批准号:
    385427-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Collaborative Research and Development Grants
Modeling moisture diffusion coupled with physical aging phenomena in thin-wall polymeric parts
模拟薄壁聚合物部件中的湿气扩散与物理老化现象
  • 批准号:
    385427-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Collaborative Research and Development Grants
A hypothesis-driven physical examination : An international collaborative diffusion and validation project
假设驱动的体检:国际合作扩散和验证项目
  • 批准号:
    21390169
  • 财政年份:
    2009
  • 资助金额:
    $ 26.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了