Investigation of Degradation Mechanisms in Layered Oxide Cathodes for Na Ion Batteries

钠离子电池层状氧化物阴极降解机制的研究

基本信息

  • 批准号:
    1410936
  • 负责人:
  • 金额:
    $ 46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractLithium ion batteries are widely used as power sources in portable electronics and electric cars. However, the scarcity of lithium potentially limits the application of lithium ion batteries in future. Sodium ion battery is a promising alternative energy storage technology due to its potential to compete with lithium ion batteries in all performance categories, such as energy and power densities. More importantly, sodium is naturally abundant and sodium ion batteries can be manufactured at much lower cost. However, sodium ion batteries suffer from poor cycle life, largely due to the degradation and failure of the cathode. This research studies the degradation mechanism of the layered oxide cathode materials at bulk and microscopic scales. With support from the Solid State and Materials Chemistry Program in the Division of Materials Research, the goal is to understand the structural evolution of the cathode materials during battery cycling and to develop means of mitigating electrode degradations for improving the cycle life of sodium ion batteries. The project involves close collaborations between experiment and modeling. Research opportunities are provided to train both graduate and undergraduate students. The project also involves the course development for high school students. Technical AbstractSodium ion battery is a promising energy storage device with low cost. However, the severe degradation of cathodes can drastically limit the cycle life of sodium ion batteries. The project aims to elucidate the degradation mechanisms in the cathode of sodium ion batteries using the layered metal oxides as model systems. The research hypothesis is that the mechanical degradations are primarily responsible for the capacity fade and accordingly poor cycle stability in layered oxide cathodes. Model compounds, such as sodium manganese oxide, are synthesized and electrochemically tested in half cells. In situ X-ray diffraction is used to study the structural change of the bulk cathode materials, and in situ transmission electron microscopy is used to observe the microscopic structural changes. Based on the experimental observations and analyses, multiscale chemomechanical models are developed to rationalize and predict the degradation mechanism of the cathodes. This research not only enables the design of high performance electrode materials for sodium ion battery with long cycle life, but also develops novel in situ experimental techniques to advance the fundamental research of solid state chemistry.
锂离子电池广泛用作便携式电子设备和电动汽车的电源。然而,锂的稀缺性可能会限制锂离子电池未来的应用。钠离子电池是一种很有前途的替代储能技术,因为它在能量和功率密度等所有性能类别上都有可能与锂离子电池竞争。更重要的是,钠是天然丰富的,钠离子电池可以以低得多的成本制造。然而,钠离子电池的循环寿命很差,这主要是由于阴极的退化和失效。本研究从体相和微观两个层面对层状氧化物正极材料的降解机理进行了研究。在材料研究部门固态和材料化学计划的支持下,目标是了解电池循环过程中阴极材料的结构演变,并开发减轻电极降解的方法,以提高钠离子电池的循环寿命。该项目涉及实验和建模之间的密切合作。提供研究机会,以培养研究生和本科生。该项目还涉及高中学生的课程开发。技术摘要钠离子电池是一种很有前途的低成本储能装置。然而,阴极的严重退化会极大地限制钠离子电池的循环寿命。该项目的目的是阐明在钠离子电池阴极的降解机制,使用层状金属氧化物作为模型系统。研究假设是机械退化是层状氧化物阴极容量衰减和相应的循环稳定性差的主要原因。模型化合物,如钠锰氧化物,在半电池中合成和电化学测试。利用X射线衍射原位分析了阴极材料的结构变化,利用透射电子显微镜原位观察了阴极材料的微观结构变化。在实验观察和分析的基础上,建立了多尺度化学力学模型,以合理化和预测阴极的降解机理。该研究不仅可以设计出高性能、长循环寿命的钠离子电池电极材料,而且还可以开发新的原位实验技术,推动固态化学的基础研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hailong Chen其他文献

A supercomplex, approximately 720 kDa and composed of both photosystem reaction centers, dissipates excess energy by PSI in green macroalgae under salt stress
约 720 kDa 的超级复合物由两个光系统反应中心组成,在盐胁迫下通过 PSI 耗散绿色大型藻类中的多余能量
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Shan Gao;Zheng Chi;Hailong Chen;Zhenbing Zheng;Yuxiang Weng;Guangce Wang
  • 通讯作者:
    Guangce Wang
Performance Analysis for a Wave Energy Harvester of Piezoelectric Cantilever Beam
压电悬臂梁波浪能采集器性能分析
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ming Liu;Hengxu Liu;Hailong Chen;Yuanchao Chai;Liquan Wang
  • 通讯作者:
    Liquan Wang
A generalized peridynamic material correspondence formulation using non-spherical influence functions
使用非球形影响函数的广义近场动力学材料对应公式
Ulinastatin attenuates cerebral ischemia-reperfusion injury in rats.
乌司他丁减轻大鼠脑缺血再灌注损伤。
Expression profiles and functional annotation analysis of mRNAs in suprachiasmatic nucleus of Clock mutant mice.
Clock突变小鼠视交叉上核mRNA的表达谱和功能注释分析。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Yanli Wang;Ke Lv;Mei Zhao;Fengji Liang;Hailong Chen;Guohua Ji;Tingmei Wang;Yongliang Zhang;Hongqing Cao;Yinghui Li;Lina Qu
  • 通讯作者:
    Lina Qu

Hailong Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hailong Chen', 18)}}的其他基金

Collaborative Research: Guiding synthesis of nanoparticles with nanometric phase diagram and in situ X-ray diffraction
合作研究:用纳米相图和原位X射线衍射指导纳米颗粒的合成
  • 批准号:
    2004878
  • 财政年份:
    2020
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SusChem: Development and fundamental investigation of high capacity cathode materials for high energy and low cost Na-ion batteries
SusChem:高能低成本钠离子电池高容量正极材料的开发与基础研究
  • 批准号:
    1706723
  • 财政年份:
    2017
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
SusChem: Development and fundamental investigation of a novel low cost recycling technology for spent Li-ion batteries
SusChem:新型低成本废旧锂离子电池回收技术的开发和基础研究
  • 批准号:
    1605692
  • 财政年份:
    2016
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant

相似海外基金

Visualization of degradation mechanisms and ions migration pathways in perovskite solar cells
钙钛矿太阳能电池中降解机制和离子迁移路径的可视化
  • 批准号:
    23K26768
  • 财政年份:
    2024
  • 资助金额:
    $ 46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DynProtect - Mechanisms of dynein-dependent transport and degradation of protein aggregates.
DynProtect - 动力蛋白依赖性运输和蛋白质聚集体降解的机制。
  • 批准号:
    EP/Y026004/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Fellowship
Degradation mechanisms of structural composites under extreme weather
极端天气下结构复合材料的降解机制
  • 批准号:
    DP230101152
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Discovery Projects
Real-Time Monitoring of Internal Erosion Using Shear Waves and Elucidation of Soil Structure Degradation Mechanisms
利用剪切波实时监测内部侵蚀并阐明土壤结构退化机制
  • 批准号:
    23KJ0512
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Sunlight and tire wear particles - a toxic combination? Evaluating mechanisms for mobilization and degradation of tire particle compounds
阳光和轮胎磨损颗粒——有毒的组合?
  • 批准号:
    2327008
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Standard Grant
Visualization of degradation mechanisms and ions migration pathways in perovskite solar cells
钙钛矿太阳能电池中降解机制和离子迁移路径的可视化
  • 批准号:
    23H02075
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mechanisms of replication fork degradation in vertebrates
脊椎动物复制叉降解机制
  • 批准号:
    10564777
  • 财政年份:
    2023
  • 资助金额:
    $ 46万
  • 项目类别:
Mechanisms of bacterial RNA degradation
细菌RNA降解机制
  • 批准号:
    10406497
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
  • 项目类别:
CAREER: Probing and Controlling Acidic Electrocatalytic Oxidation Mechanisms and Catalyst Degradation Processes
职业:探测和控制酸性电催化氧化机制和催化剂降解过程
  • 批准号:
    2144365
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
  • 项目类别:
    Continuing Grant
Molecular mechanisms of ribosome degradation in host defense of insect cells
昆虫细胞宿主防御中核糖体降解的分子机制
  • 批准号:
    22H02358
  • 财政年份:
    2022
  • 资助金额:
    $ 46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了