CAREER: Probing and Controlling Acidic Electrocatalytic Oxidation Mechanisms and Catalyst Degradation Processes

职业:探测和控制酸性电催化氧化机制和催化剂降解过程

基本信息

  • 批准号:
    2144365
  • 负责人:
  • 金额:
    $ 60.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

As our global energy landscape evolves to incorporate a greater fraction of renewable electricity from sources such as wind, solar, and hydroelectric technologies, electrochemical processes will become a major source of fuels and chemicals. Hydrogen is a critical component of many fuels and chemicals, such that hydrogen demand in the US is projected to increase 2-5 times over the next 30 years. Proton exchange membrane (PEM) electrolyzers are a promising technology for large-scale, sustainable production of hydrogen from water, but development of efficient and stable catalysts for water oxidation in acidic conditions has been a longstanding roadblock for widespread implementation. The project will 1) investigate a class of precisely tuned catalyst materials that are designed to withstand the harsh oxidative and acidic conditions of PEM electrolyzers with minimal use of expensive and strategic precious metals, and 2) characterize critical relationships between catalyst structures and reaction mechanisms, as related to reaction rates and efficient utilization of electrical energy. The scientific outcomes of this work will lead to improved technological feasibility of sustainable processes for production of fuels and chemicals from renewable electricity sources. Furthermore, the research will be integrated with a sustainable plan for collaborative development and implementation of new curriculum and classroom activities that emphasize student engagement to improve retention of students from diverse backgrounds and fulfill Next Generation Science Standards, via work with Chicago Public High School teachers.This project focuses on water oxidation in acidic conditions as a critical, yet comparatively simple, electrochemical oxidation reaction for fundamental study of reaction mechanisms, surface structure evolution, and deactivation processes for perovskite oxide catalysts as a function of their electronic and geometric structure properties. Perovskite oxide structures provide a tunable platform for systematically modulating properties of catalysts both at the surface and in the bulk, while utilizing lower loadings of iridium compared to IrO2 and Ir/C benchmark catalysts. In situ spectroscopy and kinetic isotope studies will probe trends in reaction mechanisms and assess extent of catalyst surface reorganization with relation to material properties (oxidation states, metal-oxygen bond covalency, metal-oxygen-metal bond angle, etc.) and reaction conditions. Microscopy, electrochemical quartz crystal microbalance, and impedance spectroscopy will monitor morphology, mass changes, and charge transport effects as a result of long-term testing to provide insights to various deactivation processes. This work will also establish intrinsic catalyst material stability metrics to complement more ubiquitous performance stability metrics to guide development of high performance electrocatalytic systems. Fundamental mechanistic insights and structural understanding arising from this work will fill major knowledge gaps for design and systematic control of metal oxide catalysts that drive a wide range of selective electrochemical oxidation reactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着我们的全球能源格局的发展,包括来自风能,太阳能和水力发电技术等来源的更大比例的可再生电力,电化学过程将成为燃料和化学品的主要来源。氢气是许多燃料和化学品的关键成分,因此美国的氢气需求预计在未来30年内将增加2-5倍。质子交换膜(PEM)电解槽是一种用于从水中大规模、可持续地生产氢气的有前途的技术,但是开发用于酸性条件下水氧化的高效且稳定的催化剂一直是广泛实施的长期障碍。该项目将1)研究一类精确调整的催化剂材料,这些材料旨在承受PEM电解槽的苛刻氧化和酸性条件,最大限度地使用昂贵和战略贵金属,2)表征催化剂结构和反应机制之间的关键关系,如反应速率和电能的有效利用。这项工作的科学成果将提高利用可再生电力生产燃料和化学品的可持续工艺的技术可行性。此外,该研究将与一个可持续的计划相结合,以合作开发和实施新的课程和课堂活动,强调学生参与,以提高来自不同背景的学生的保留率,并通过与芝加哥公立高中教师的合作实现下一代科学标准。电化学氧化反应,用于钙钛矿氧化物催化剂的反应机理、表面结构演变和失活过程的基础研究,作为其电子和几何结构性质的函数。过氧化氢氧化物结构提供了一个可调的平台,用于系统地调节催化剂的表面和本体性能,同时利用较低的铱负载量相比,IrO 2和Ir/C基准催化剂。原位光谱和动力学同位素研究将探测反应机理的趋势,并评估催化剂表面重组与材料性质(氧化态、金属-氧键共价性、金属-氧-金属键角等)的关系。和反应条件显微镜、电化学石英晶体微天平和阻抗谱将监测长期测试的形态、质量变化和电荷传输效应,以提供对各种失活过程的见解。这项工作还将建立固有的催化剂材料稳定性指标,以补充更普遍的性能稳定性指标,以指导高性能电催化系统的开发。从这项工作中产生的基本机理见解和结构理解将填补金属氧化物催化剂的设计和系统控制的主要知识空白,这些催化剂驱动广泛的选择性电化学氧化反应。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linsey Seitz其他文献

Linsey Seitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Probing matter-antimatter asymmetry with the muon electric dipole moment
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
  • 批准号:
    2230729
  • 财政年份:
    2023
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
  • 批准号:
    2230891
  • 财政年份:
    2023
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Continuing Grant
A Molecular Toolkit for Controlling and Probing Cell Junction-Actin Interactions
用于控制和探测细胞连接-肌动蛋白相互作用的分子工具包
  • 批准号:
    10276194
  • 财政年份:
    2021
  • 资助金额:
    $ 60.32万
  • 项目类别:
Probing and Controlling Electronic Dynamics in Matter with Atomic Spatiotemporal Resolution
用原子时空分辨率探测和控制物质中的电子动力学
  • 批准号:
    2110633
  • 财政年份:
    2021
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Continuing Grant
A Molecular Toolkit for Controlling and Probing Cell Junction-Actin Interactions
用于控制和探测细胞连接-肌动蛋白相互作用的分子工具包
  • 批准号:
    10454991
  • 财政年份:
    2021
  • 资助金额:
    $ 60.32万
  • 项目类别:
A Molecular Toolkit for Controlling and Probing Cell Junction-Actin Interactions
用于控制和探测细胞连接-肌动蛋白相互作用的分子工具包
  • 批准号:
    10624908
  • 财政年份:
    2021
  • 资助金额:
    $ 60.32万
  • 项目类别:
Probing and controlling topological superconductivity under vector magnetic field and pressure
矢量磁场和压力下拓扑超导的探测和控制
  • 批准号:
    20F20020
  • 财政年份:
    2020
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Probing and controlling photosynthetic analogues with single chemical bond precision
以单化学键精度探测和控制光合类似物
  • 批准号:
    1939707
  • 财政年份:
    2017
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Studentship
Collaborative Research: Probing and Controlling Binding Structure and Electron Transport in Molecular Electronic Devices - A Coordinated Computational and Experimental Study
合作研究:探测和控制分子电子器件中的结合结构和电子传输 - 协调计算和实验研究
  • 批准号:
    1609902
  • 财政年份:
    2016
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing and Controlling Binding Structure and Electron Transport in Molecular Electronic Devices--A Coordinated Computational and Experimental Study
合作研究:探测和控制分子电子器件中的结合结构和电子传输——协调计算和实验研究
  • 批准号:
    1609788
  • 财政年份:
    2016
  • 资助金额:
    $ 60.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了