Collaborative Research: Tailoring the Stability and Deformation of Nanocrystalline Alloys through Hierarchical Engineering

合作研究:通过分层工程定制纳米晶合金的稳定性和变形

基本信息

  • 批准号:
    1410941
  • 负责人:
  • 金额:
    $ 21.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: Nanocrystalline metals are rapidly becoming regarded as a new class of engineering materials with advantageous mechanical properties, such as high strength and increased wear resistance. Despite the tremendous potential of these materials, structural instabilities and limited ductility continue to hinder their best technological utility. This research combines computational and experimental materials science to investigate a novel approach for improving the stability and mechanical behavior of nanocrystalline metals by introducing periodic non-crystalline regions into the crystalline matrix material. By understanding the stability and mechanical nature of these alloys, this activity assists in the development of a new generation of novel structural materials with tunable properties. The outlined framework also develops collaborative environments for seemingly disparate scientific disciplines and stimulates new research areas in the field of modern metallurgy. The addition of new educational modules into undergraduate engineering laboratory courses is infusing principles of integrated computational materials engineering into the existing engineering curricula at both Stony Brook and Drexel University. High school students are engaging in the research through cooperative research projects, which requires focused computational and experimental components, and presentation of the results at Interactive Research or "IResearch" workshops to undergraduates enrolled in the engineering laboratories. These endeavors are enriching research opportunities for students at the high school and collegiate levels, promoting student retention in STEM disciplines, and demonstrating how engineering research can positively impact society.TECHNICAL DESCRIPTION: The objective of this research is to develop a new fundamental understanding of the interplay between nanoscale grain boundary physics and interfaces at larger structural length scales, which are generated by introducing periodic amorphous regions into the monolithic nanocrystalline structure. This project combines massively-parallel atomistic simulations with the design, synthesis, and mechanical testing of nanostructured alloys composed of solute-stabilized nanoscale grain boundaries and periodically distributed amorphous layers. The research is examining how such composite structures influence stability of the nanocrystalline grain boundary network and augment the rate limiting deformation physics for enhancing ductility. Students are being trained in cutting-edge in situ characterization methods, nanomechanical testing, and computational modeling to establish correlations between microstructural variables and their thermal stability, deformation mechanism distributions, and measured mechanical properties. By developing such correlations, this research is advancing the fundamental understanding of new material architectures for enhancing ductility in nanocrystalline metals with the potential to transform current perspectives on the design of stable alloy nanostructures.
非技术描述:纳米晶金属正迅速成为一类具有优越机械性能的新型工程材料,例如高强度和增加的耐磨性。尽管这些材料具有巨大的潜力,但结构不稳定性和有限的延展性继续阻碍其最佳技术应用。 本研究结合了计算和实验材料科学,研究了一种新的方法,通过将周期性非结晶区域引入到结晶基质材料中来改善纳米晶金属的稳定性和机械行为。 通过了解这些合金的稳定性和机械性质,这项活动有助于开发具有可调性能的新一代新型结构材料。 概述的框架还为看似不同的科学学科开发了协作环境,并刺激了现代冶金领域的新研究领域。 在本科工程实验室课程中增加新的教育模块,将综合计算材料工程的原则注入斯托尼布鲁克和德雷克塞尔大学现有的工程课程中。 高中生通过合作研究项目参与研究,这需要有重点的计算和实验部分,并在互动研究或“IResearch”讲习班上向工程实验室的本科生介绍结果。 这些努力丰富了高中和大学学生的研究机会,促进了学生在STEM学科的保留,并展示了工程研究如何对社会产生积极影响。技术描述:这项研究的目的是发展一个新的基本理解之间的相互作用纳米晶界物理和界面在更大的结构长度尺度,其通过将周期性非晶区引入单片纳米晶体结构中而产生。 该项目将并行原子模拟与由溶质稳定的纳米级晶界和周期性分布的非晶层组成的纳米结构合金的设计、合成和机械测试相结合。 该研究正在研究这种复合结构如何影响纳米晶晶界网络的稳定性,并增加速率限制变形物理以提高延展性。 学生正在接受尖端原位表征方法,纳米力学测试和计算建模的培训,以建立微观结构变量与其热稳定性,变形机制分布和测量的机械性能之间的相关性。 通过发展这种相关性,这项研究正在推进对新材料结构的基本理解,以提高纳米晶金属的延展性,并有可能改变目前对稳定合金纳米结构设计的看法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Trelewicz其他文献

Kinetics of simultaneous hydrodesulfurization and hydrodenitrogenation reactions using CoMoP/Al<sub>2</sub>O<sub>3</sub> and NiMoP/Al<sub>2</sub>O<sub>3</sub>
  • DOI:
    10.1016/j.ces.2023.118725
  • 发表时间:
    2023-07-05
  • 期刊:
  • 影响因子:
  • 作者:
    Gentil de Souza Guedes Junior;Idia Gigante Nascimento;Mueed Ahmad;Cormac Killeen;J. Anibal Boscoboinik;Jason Trelewicz;José Carlos Pinto;Matheus Dorneles de Mello;Mônica Antunes Pereira da Silva
  • 通讯作者:
    Mônica Antunes Pereira da Silva
Kinetics of simultaneous hydrodesulfurization and hydrodenitrogenation reactions using CoMoP/Alsub2/subOsub3/sub and NiMoP/Alsub2/subOsub3/sub
使用 CoMoP/Al₂O₃ 和 NiMoP/Al₂O₃ 进行同时加氢脱硫和加氢脱氮反应的动力学
  • DOI:
    10.1016/j.ces.2023.118725
  • 发表时间:
    2023-07-05
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Gentil de Souza Guedes Junior;Idia Gigante Nascimento;Mueed Ahmad;Cormac Killeen;J. Anibal Boscoboinik;Jason Trelewicz;José Carlos Pinto;Matheus Dorneles de Mello;Mônica Antunes Pereira da Silva
  • 通讯作者:
    Mônica Antunes Pereira da Silva

Jason Trelewicz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Trelewicz', 18)}}的其他基金

Collaborative Research: Deformation Mechanisms in Microstructurally Tailored High Strength Alloys Near the Ideal Limit
合作研究:接近理想极限的微观结构定制高强度合金的变形机制
  • 批准号:
    2310306
  • 财政年份:
    2023
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
Elucidating the Mechanisms of Irradiation Induced Softening in Nanocrystalline BCC Metals
阐明纳米晶 BCC 金属的辐照诱导软化机制
  • 批准号:
    1810040
  • 财政年份:
    2018
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
CAREER: Interface Engineered Amorphous Alloys for Thermoplastic Forming of Ductile Bulk Metallic Glasses
职业:用于延展性块状金属玻璃热塑成型的界面工程非晶合金
  • 批准号:
    1554411
  • 财政年份:
    2016
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Mechanics of Shear Delocalization in Metallic Glass Matrix Composites
合作研究:阐明金属玻璃基复合材料中剪切离域的机理
  • 批准号:
    1401662
  • 财政年份:
    2014
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
  • 批准号:
    2225370
  • 财政年份:
    2023
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
  • 批准号:
    2308630
  • 财政年份:
    2023
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
  • 批准号:
    2225369
  • 财政年份:
    2023
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Continuing Grant
Collaborative Research: Tailoring the Catalytic Properties of Pd Single Atoms Using Covalent Organic Frameworks
合作研究:利用共价有机框架定制 Pd 单原子的催化性能
  • 批准号:
    2308631
  • 财政年份:
    2023
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
  • 批准号:
    2312247
  • 财政年份:
    2023
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
  • 批准号:
    2209819
  • 财政年份:
    2022
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
  • 批准号:
    2209821
  • 财政年份:
    2022
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
  • 批准号:
    2209823
  • 财政年份:
    2022
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154398
  • 财政年份:
    2022
  • 资助金额:
    $ 21.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了