Strain physics in graphene - from friction to pseudo magnetic fields

石墨烯中的应变物理——从摩擦到赝磁场

基本信息

  • 批准号:
    1411008
  • 负责人:
  • 金额:
    $ 53.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical abstract: Graphene, a single atomic layer of carbon atoms, has a wealth of very extreme properties, e.g. being impermeable to gases even at only one atomic layer thickness, being extremely elastic, and having extremely high heat and electrical conductivity. The research group at Boston University is exploring how applying strain to graphene manipulates these properties for novel and interesting applications from mechanical resonators, and electronic and optical devices, to thermal management devices. In order to use strain engineering for these purposes, it is necessary to know how much friction is there to anchor the strained graphene. The researchers use miniature chambers covered by graphene to measure friction and how to control it by patterning the substrate. Graphene covered microchambers are strain tuned by applying a variable external pressure that deflects the suspended graphene membrane creating strain in both the suspended and supported regions. The strain response is measured using optical spectroscopy. Certain exotic strain distributions are predicted to affect the electrons in graphene in such a way that they get trapped and no longer can conduct electricity. The BU team is working on developing chamber shapes and friction patterning to achieve this state which can be turned on and off by varying the external pressure. The team is also studying how pressure can vary the heat conductivity in graphene. Technical Abstract Graphene is a good candidate for strain engineered devices since it can withstand a 20% extension without breaking. Hence huge strains can be induced and engineered for novel and interesting applications. Strain engineering affects many types of devices, from mechanical resonators to electronic and optical devices. Strain engineering also opens up new areas of exotic physics and applications, perhaps most spectacularly from creating magnetic pseudo fields with quantization of electrons and holes into Landau levels at room temperature. Therefore it is important to have a solid understanding of graphene-substrate interaction and friction under variable strain. The research team at Boston University has developed a method of applying variable strain by placing graphene to seal microchambers with variable external pressure. The graphene membrane deforms over the chamber and slides due to finite friction. With micro-Raman measurements the team is able to map out the strain profile and determine the friction coefficient which is pressure dependent. Knowledge of the friction dependence on substrate treatment allows strain patterning. Variable friction is achieved by patterning the surface treatment and hence local coefficient of friction. The varying friction is tailored to create strain distributions that will create high local pseudo magnetic field. The researchers are combining the strain-created high local pseudo magnetic fields with plasmonic patterning to overlap the plasmonic hotspots with the high pseudo field regions. The pseudo field response is then read out via Raman spectroscopy using phonon and Landau Level exciton interactions. Another application is graphene as high thermal conductivity conduits. Suspended graphene has been shown to have extremely high heat conductivity. Theory predicts that the out-of-plane phonons that carry the heat are much less efficient than the in-plane acoustic modes. Strain is predicted to remove the scattering of the in-plane modes into the out-of-plane modes as well as reducing the density of states so strain could drastically increase the already high thermal conductivity. The researchers are using their tunable strain on suspended graphene to experimentally measure the effect of strain on the thermal conductivity of graphene.
非技术性摘要:石墨烯是碳原子的单原子层,具有丰富的非常极端的性质,例如即使在仅一个原子层厚度下也不透气,具有极高的弹性,并且具有极高的导热性和导电性。波士顿大学的研究小组正在探索如何将应变施加到石墨烯上,以操纵这些特性,用于从机械谐振器、电子和光学设备到热管理设备等新颖而有趣的应用。 为了将应变工程用于这些目的,有必要知道有多少摩擦力来锚应变石墨烯。研究人员使用石墨烯覆盖的微型室来测量摩擦力,以及如何通过图案化衬底来控制摩擦力。石墨烯覆盖的微室通过施加可变的外部压力进行应变调节,该外部压力使悬浮的石墨烯膜偏转,从而在悬浮区域和支撑区域两者中产生应变。应变响应是使用光谱学测量的。 预计某些奇异的应变分布会影响石墨烯中的电子,使它们被捕获,不再导电。BU团队正在开发腔室形状和摩擦图案,以实现这种状态,可以通过改变外部压力来打开和关闭。该团队还在研究压力如何改变石墨烯的热导率。 石墨烯是应变工程设备的良好候选者,因为它可以承受20%的延伸而不断裂。因此,巨大的菌株可以被诱导和工程化,用于新的和有趣的应用。应变工程影响许多类型的设备,从机械谐振器到电子和光学设备。应变工程还开辟了奇异物理学和应用的新领域,也许最引人注目的是通过在室温下将电子和空穴量子化到朗道能级来创建磁赝场。因此,重要的是要有一个坚实的理解石墨烯基板的相互作用和摩擦下的可变应变。波士顿大学的研究小组开发了一种通过放置石墨烯来密封具有可变外部压力的微室来施加可变应变的方法。石墨烯膜在腔室上变形并由于有限摩擦而滑动。通过显微拉曼测量,该团队能够绘制出应变曲线并确定与压力相关的摩擦系数。摩擦对衬底处理的依赖性的知识允许应变图案化。 通过图案化表面处理实现可变摩擦,从而实现局部摩擦系数。变化的摩擦被定制以产生将产生高局部伪磁场的应变分布。研究人员正在将应变产生的高局部伪磁场与等离子体图案相结合,以使等离子体热点与高伪场区域重叠。然后通过使用声子和朗道能级激子相互作用的拉曼光谱读出伪场响应。另一个应用是石墨烯作为高导热性导管。悬浮的石墨烯已被证明具有极高的导热性。理论预测,携带热量的面外声子的效率比面内声学模式低得多。应变被预测为去除面内模式到面外模式的散射,以及降低态密度,因此应变可以急剧增加已经很高的热导率。研究人员正在使用他们对悬浮石墨烯的可调应变来实验测量应变对石墨烯热导率的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Swan其他文献

Anna Swan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Swan', 18)}}的其他基金

NUE: Undergraduate Laboratory Experiences in Nanotechnology devices and Systems (U-LENS)
NUE:纳米技术设备和系统的本科实验室经验(U-LENS)
  • 批准号:
    0939369
  • 财政年份:
    2009
  • 资助金额:
    $ 53.93万
  • 项目类别:
    Standard Grant
Vibrational and Electronic Aspects of Carbon Nanotubes and their Interactions
碳纳米管的振动和电子方面及其相互作用
  • 批准号:
    0706574
  • 财政年份:
    2007
  • 资助金额:
    $ 53.93万
  • 项目类别:
    Standard Grant
Nanometer Resolution Spectral Self-interference Fluorescence Microscopy
纳米分辨率光谱自干涉荧光显微镜
  • 批准号:
    0138425
  • 财政年份:
    2002
  • 资助金额:
    $ 53.93万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Physics B
  • 批准号:
    11224806
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
tau轻子衰变与新物理模型唯象研究
  • 批准号:
    11005033
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
Chinese physics B
  • 批准号:
    11024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
新强子态研究
  • 批准号:
    10905053
  • 批准年份:
    2009
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高能强子对撞机Higgs衰变到双光子末态的寻找
  • 批准号:
    10975134
  • 批准年份:
    2009
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
强子对撞机上新物理信号的多轻子末态研究
  • 批准号:
    10675110
  • 批准年份:
    2006
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
强子对撞物理中的R宇称现象学研究
  • 批准号:
    10575095
  • 批准年份:
    2005
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Virtual nanostructure simulation (VINAS) portal
虚拟纳米结构模拟 (VINAS) 门户
  • 批准号:
    10567076
  • 财政年份:
    2023
  • 资助金额:
    $ 53.93万
  • 项目类别:
Population monitoring of stress markers in underserved communities
服务欠缺社区压力标记的人口监测
  • 批准号:
    10766447
  • 财政年份:
    2023
  • 资助金额:
    $ 53.93万
  • 项目类别:
Correlated Electron Physics in Graphene and Other Novel Quantum Materials
石墨烯和其他新型量子材料中的相关电子物理
  • 批准号:
    1916958
  • 财政年份:
    2019
  • 资助金额:
    $ 53.93万
  • 项目类别:
    Continuing Grant
Continuous Glucose Monitoring with Graphene-Based Disposable Wireless Sensors
使用基于石墨烯的一次性无线传感器进行连续血糖监测
  • 批准号:
    8633235
  • 财政年份:
    2013
  • 资助金额:
    $ 53.93万
  • 项目类别:
Physics of graphene/hexagonal boron nitride heterostructures
石墨烯/六方氮化硼异质结构的物理
  • 批准号:
    EP/L013010/1
  • 财政年份:
    2013
  • 资助金额:
    $ 53.93万
  • 项目类别:
    Research Grant
超伝導-グラフェン接合を利用した量子エンタングラー
使用超导石墨烯结的量子纠缠器
  • 批准号:
    13F03019
  • 财政年份:
    2013
  • 资助金额:
    $ 53.93万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum characteristics of graphene reflecting interplay among spin, layer and orbital degrees of freedom and their relations to particle physics
石墨烯的量子特性反映了自旋、层和轨道自由度之间的相互作用及其与粒子物理的关系
  • 批准号:
    24540270
  • 财政年份:
    2012
  • 资助金额:
    $ 53.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Physics-Based Study of Graphene Colloidal Systems as Metal Working Fluids for Micro-Machining Applications
基于物理的石墨烯胶体系统作为微加工应用金属加工液的研究
  • 批准号:
    1130215
  • 财政年份:
    2011
  • 资助金额:
    $ 53.93万
  • 项目类别:
    Standard Grant
Growth and Interface Physics of Epitaxial Graphene
外延石墨烯的生长和界面物理
  • 批准号:
    1106131
  • 财政年份:
    2011
  • 资助金额:
    $ 53.93万
  • 项目类别:
    Continuing Grant
CAREER: Table-top High Energy Physics in Graphene
职业:石墨烯中的桌面高能物理
  • 批准号:
    0847638
  • 财政年份:
    2009
  • 资助金额:
    $ 53.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了