Geometric Numerical Discretizations of Gauge Field Theories and Interconnected Systems
规范场论和互连系统的几何数值离散
基本信息
- 批准号:1411792
- 负责人:
- 金额:$ 14.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Practical engineered systems, such as electro-mechanical systems in human prosthetics, typically involve components described by coupled, distinct physical theories. This research project develops methods to easily model complicated systems by connecting simpler models together, which allows sophisticated mathematical and modeling tools to be more readily accessible to the engineering community. This will reduce the barrier to constructing high-fidelity mathematical models that can be used for rapid prototyping in the rational design process, leading to better, cheaper, and faster translation of conceptual designs into commercially realizable products. In addition to modeling, the research also involves designing controllers for interconnected systems. This is relevant to the control of distributed networks of autonomous aerial and underwater vehicles, which have applications to search and rescue, ocean exploration, and distributed sensor networks for both disaster monitoring and homeland security. To further facilitate the dissemination of this research to the engineering community, the investigator and his collaborators will develop a two-volume graduate textbook that will be accessible to a broad technical audience.Dirac and multi-Dirac mechanics and geometry provide a unified mathematical framework for describing Lagrangian and Hamiltonian mechanics and field theories, as well as degenerate, interconnected, and nonholonomic systems. Variational integrators yield geometric structure-preserving numerical methods that automatically preserve the symplectic form and momentum maps, and exhibit excellent long-time energy stability. This project studies far reaching generalizations of the variational integrator approach for discretizing covariant gauge theories, such as electromagnetism and general relativity, and interconnected systems, such as electrical circuits and multibody systems. This involves: (i) a systematic framework for constructing and analyzing multi-Dirac variational integrators for Lagrangian partial differential equations; (ii) the connection between discrete covariant and instantaneous formulations of covariant gauge theories, and group-equivariant finite-element spaces using spacetime finite-element exterior calculus and Lorentzian metric-valued geodesic finite-elements; (iii) discrete interconnection theory for Dirac mechanical systems and their associated control theory.
实际的工程系统,如人体假肢中的机电系统,通常涉及由耦合的、不同的物理理论描述的组件。该研究项目开发了通过将简单模型连接在一起来轻松建模复杂系统的方法,这使得工程界更容易获得复杂的数学和建模工具。这将减少构建高保真数学模型的障碍,这些模型可用于合理设计过程中的快速原型制作,从而更好,更便宜,更快地将概念设计转化为商业可实现的产品。除了建模,研究还涉及设计互联系统的控制器。这与自主飞行器和水下航行器的分布式网络的控制有关,这些自主飞行器和水下航行器应用于搜索和救援、海洋勘探以及用于灾害监测和国土安全的分布式传感器网络。为了进一步促进这项研究的传播到工程界,研究员和他的合作者将开发一个两卷本的研究生教科书,将访问到广泛的技术观众。狄拉克和多狄拉克力学和几何提供了一个统一的数学框架,用于描述拉格朗日和哈密顿力学和场论,以及退化,互连和非完整系统。变分积分器产生几何结构保持数值方法,自动保持辛形式和动量映射,并表现出良好的长期能量稳定性。本计画研究广义变分积分法,以离散化协变规范理论,如电磁学与广义相对论,以及互联系统,如电路与多体系统。这包括:(i)建立和分析拉格朗日偏微分方程的多Dirac变分积分的系统框架;(ii)协变规范理论的离散协变和瞬时公式之间的联系,以及利用时空有限元外演算和洛伦兹度量值测地有限元的群等变有限元空间;(iii)狄拉克力学系统的离散互联理论及其相关的控制理论。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational Discretizations of Gauge Field Theories Using Group-Equivariant Interpolation
- DOI:10.1007/s10208-019-09420-4
- 发表时间:2019-10
- 期刊:
- 影响因子:3
- 作者:M. Leok
- 通讯作者:M. Leok
Geometric exponential integrators
- DOI:10.1016/j.jcp.2019.01.005
- 发表时间:2017-03
- 期刊:
- 影响因子:0
- 作者:Xu-Hui Shen;M. Leok
- 通讯作者:Xu-Hui Shen;M. Leok
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melvin Leok其他文献
Safe Stabilizing Control for Polygonal Robots in Dynamic Elliptical Environments
动态椭圆环境中多边形机器人的安全稳定控制
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kehan Long;Khoa Tran;Melvin Leok;Nikolay Atanasov - 通讯作者:
Nikolay Atanasov
On Properties of Adjoint Systems for Evolutionary PDEs
演化偏微分方程伴随系统的性质
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Brian K. Tran;Benjamin Southworth;Melvin Leok - 通讯作者:
Melvin Leok
A Type II Hamiltonian Variational Principle and Adjoint Systems for Lie Groups
- DOI:
10.1007/s10883-025-09730-7 - 发表时间:
2025-02-15 - 期刊:
- 影响因子:0.800
- 作者:
Brian K. Tran;Melvin Leok - 通讯作者:
Melvin Leok
Melvin Leok的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melvin Leok', 18)}}的其他基金
Hierarchical Geometric Accelerated Optimization, Collision-based Constraint Satisfaction, and Sensitivity Analysis for VLSI Chip Design
VLSI 芯片设计的分层几何加速优化、基于碰撞的约束满足和灵敏度分析
- 批准号:
2307801 - 财政年份:2023
- 资助金额:
$ 14.08万 - 项目类别:
Standard Grant
Geometric Numerical Integration of Plasma Physics and General Relativity
等离子体物理与广义相对论的几何数值积分
- 批准号:
1813635 - 财政年份:2018
- 资助金额:
$ 14.08万 - 项目类别:
Standard Grant
Collaborative Research: Ergodic Trajectories in Discrete Mechanics
协作研究:离散力学中的遍历轨迹
- 批准号:
1334759 - 财政年份:2013
- 资助金额:
$ 14.08万 - 项目类别:
Standard Grant
Collaborative Research: Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group
合作研究:李群上哈密顿系统的计算几何不确定性传播
- 批准号:
1029445 - 财政年份:2010
- 资助金额:
$ 14.08万 - 项目类别:
Standard Grant
CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications
职业:计算几何力学:基础、计算和应用
- 批准号:
1010687 - 财政年份:2009
- 资助金额:
$ 14.08万 - 项目类别:
Continuing Grant
LTB: Generalized Variational Integrators for Large-Scale Scientific Computation
LTB:用于大规模科学计算的广义变分积分器
- 批准号:
1001521 - 财政年份:2009
- 资助金额:
$ 14.08万 - 项目类别:
Standard Grant
CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications
职业:计算几何力学:基础、计算和应用
- 批准号:
0747659 - 财政年份:2008
- 资助金额:
$ 14.08万 - 项目类别:
Continuing Grant
LTB: Generalized Variational Integrators for Large-Scale Scientific Computation
LTB:用于大规模科学计算的广义变分积分器
- 批准号:
0714223 - 财政年份:2007
- 资助金额:
$ 14.08万 - 项目类别:
Standard Grant
Computational Geometric Mechanics and its Applications to Geometric Control Theory
计算几何力学及其在几何控制理论中的应用
- 批准号:
0726263 - 财政年份:2007
- 资助金额:
$ 14.08万 - 项目类别:
Standard Grant
Computational Geometric Mechanics and its Applications to Geometric Control Theory
计算几何力学及其在几何控制理论中的应用
- 批准号:
0504747 - 财政年份:2005
- 资助金额:
$ 14.08万 - 项目类别:
Standard Grant
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 14.08万 - 项目类别:
Fellowship
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
- 批准号:
DP240102104 - 财政年份:2024
- 资助金额:
$ 14.08万 - 项目类别:
Discovery Projects
Experiment-numerical-virtual Generative Design for Nondeterministic Impacts
非确定性影响的实验数值虚拟生成设计
- 批准号:
DP240102559 - 财政年份:2024
- 资助金额:
$ 14.08万 - 项目类别:
Discovery Projects
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
- 批准号:
DE240101106 - 财政年份:2024
- 资助金额:
$ 14.08万 - 项目类别:
Discovery Early Career Researcher Award
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 14.08万 - 项目类别:
Studentship
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
- 批准号:
2346964 - 财政年份:2024
- 资助金额:
$ 14.08万 - 项目类别:
Standard Grant
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 14.08万 - 项目类别:
Continuing Grant
LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
- 批准号:
EP/Y027639/1 - 财政年份:2024
- 资助金额:
$ 14.08万 - 项目类别:
Fellowship
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
- 批准号:
2340527 - 财政年份:2024
- 资助金额:
$ 14.08万 - 项目类别:
Continuing Grant
Goldilocks convergence tools and best practices for numerical approximations in Density Functional Theory calculations
密度泛函理论计算中数值近似的金发姑娘收敛工具和最佳实践
- 批准号:
EP/Z530657/1 - 财政年份:2024
- 资助金额:
$ 14.08万 - 项目类别:
Research Grant














{{item.name}}会员




