Computational Geometric Mechanics and its Applications to Geometric Control Theory

计算几何力学及其在几何控制理论中的应用

基本信息

项目摘要

The geometric approach to mechanics serves as the theoretical underpinning of innovative control methodologies in geometric control theory. These techniques allow the attitude of satellites to be controlled using changes in shape, as opposed to chemical propulsion, and are the basis for understanding the ability of a falling cat to always land on its feet, even when released in an inverted orientation. Computational geometric mechanics aims to leverage novel discrete differential geometric tools and discrete analogues of Lagrangian and Hamiltonian mechanics to systematically discretize the geometric approach to mechanics, while preserving geometric structure at a discrete level, thereby providing an efficient method of obtaining qualitatively accurate simulations over long times. The goal of this project is to continue the development of computational geometric mechanics and to apply it to geometric control theory, which will yield numerical implementations of control algorithms that exhibit good long-time behavior.This research will provide rational design principles for the construction of accurate and efficient real-time automatic control of modern engineering systems, such as robotic arms, spacecraft, and underwater vehicles. This is particularly important, due to the trend towards autonomous space and underwater vehicle missions with long deployment times and low energy propulsion systems, wherein accurate control algorithms are necessary to maximize the operational lifespan and range of these missions. Such missions will serve as the backbone of distributed space and underwater sensor networks that will enable us to continually monitor our oceans, environment, and climate.
力学的几何方法是几何控制理论中创新控制方法的理论基础。 这些技术允许使用形状的变化来控制卫星的姿态,而不是化学推进,并且是理解下落的猫总是用脚着陆的能力的基础,即使在倒置的方向上释放。 计算几何力学旨在利用新的离散微分几何工具和拉格朗日和哈密顿力学的离散类似物来系统地离散力学的几何方法,同时在离散水平上保持几何结构,从而提供一种有效的方法来获得长时间的定性准确模拟。 本研究的目的是继续发展计算几何力学,并将其应用于几何控制理论,从而产生具有良好长期性能的控制算法的数值实现,为构建机械臂、航天器和水下航行器等现代工程系统的精确和高效的实时自动控制提供合理的设计原则。 这一点特别重要,因为自主空间和水下航行器任务的发展趋势是部署时间长,推进系统能耗低,需要精确的控制算法来最大限度地延长这些任务的使用寿命和航程。 这些任务将成为分布式空间和水下传感器网络的骨干,使我们能够持续监测海洋、环境和气候。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melvin Leok其他文献

Safe Stabilizing Control for Polygonal Robots in Dynamic Elliptical Environments
动态椭圆环境中多边形机器人的安全稳定控制
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kehan Long;Khoa Tran;Melvin Leok;Nikolay Atanasov
  • 通讯作者:
    Nikolay Atanasov
On Properties of Adjoint Systems for Evolutionary PDEs
演化偏微分方程伴随系统的性质
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian K. Tran;Benjamin Southworth;Melvin Leok
  • 通讯作者:
    Melvin Leok
A Type II Hamiltonian Variational Principle and Adjoint Systems for Lie Groups

Melvin Leok的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melvin Leok', 18)}}的其他基金

Hierarchical Geometric Accelerated Optimization, Collision-based Constraint Satisfaction, and Sensitivity Analysis for VLSI Chip Design
VLSI 芯片设计的分层几何加速优化、基于碰撞的约束满足和灵敏度分析
  • 批准号:
    2307801
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Geometric Numerical Integration of Plasma Physics and General Relativity
等离子体物理与广义相对论的几何数值积分
  • 批准号:
    1813635
  • 财政年份:
    2018
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Geometric Numerical Discretizations of Gauge Field Theories and Interconnected Systems
规范场论和互连系统的几何数值离散
  • 批准号:
    1411792
  • 财政年份:
    2014
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Ergodic Trajectories in Discrete Mechanics
协作研究:离散力学中的遍历轨迹
  • 批准号:
    1334759
  • 财政年份:
    2013
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group
合作研究:李群上哈密顿系统的计算几何不确定性传播
  • 批准号:
    1029445
  • 财政年份:
    2010
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications
职业:计算几何力学:基础、计算和应用
  • 批准号:
    1010687
  • 财政年份:
    2009
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
LTB: Generalized Variational Integrators for Large-Scale Scientific Computation
LTB:用于大规模科学计算的广义变分积分器
  • 批准号:
    1001521
  • 财政年份:
    2009
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
CAREER: Computational Geometric Mechanics: Foundations, Computation, and Applications
职业:计算几何力学:基础、计算和应用
  • 批准号:
    0747659
  • 财政年份:
    2008
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
LTB: Generalized Variational Integrators for Large-Scale Scientific Computation
LTB:用于大规模科学计算的广义变分积分器
  • 批准号:
    0714223
  • 财政年份:
    2007
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Computational Geometric Mechanics and its Applications to Geometric Control Theory
计算几何力学及其在几何控制理论中的应用
  • 批准号:
    0726263
  • 财政年份:
    2007
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
  • 批准号:
    2338492
  • 财政年份:
    2024
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Geometric Probability in Statistical Mechanics and Game Theory
统计力学和博弈论中的几何概率
  • 批准号:
    2153359
  • 财政年份:
    2022
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Advances in Geometric Mechanics and Topology of Quantum Systems
量子系统几何力学和拓扑的进展
  • 批准号:
    21K03223
  • 财政年份:
    2021
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Mechanics of Neural Networks
神经网络的几何力学
  • 批准号:
    19K03635
  • 财政年份:
    2019
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric-edge specification in cell growth mechanics and morphogenesis
细胞生长力学和形态发生中的几何边缘规范
  • 批准号:
    BB/P01979X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Research Grant
Geometric Mechanics of Solids: new analysis of modern engineering materials
固体几何力学:现代工程材料的新分析
  • 批准号:
    EP/N026136/1
  • 财政年份:
    2017
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Fellowship
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
  • 批准号:
    435827-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Discovery Grants Program - Individual
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
  • 批准号:
    435827-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Mechanics of Cellular Origami Assemblages
细胞折纸组合的几何力学
  • 批准号:
    1538830
  • 财政年份:
    2015
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Constrained geometric mechanics: theory and applications
约束几何力学:理论与应用
  • 批准号:
    435827-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了