Unveiling how the XPC nucleotide excision repair complex senses DNA damage

揭示 XPC 核苷酸切除修复复合物如何感知 DNA 损伤

基本信息

  • 批准号:
    1412692
  • 负责人:
  • 金额:
    $ 60.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

DNA in cells is continuously being damaged by diverse sources including UV from sun, industrial pollutant, cigarette smoke, and burnt food. These DNA lesions, if left unrepaired, can block important cellular functions and create errors in the genetic code, which may lead to cell death or diseases. This project will tackle two key questions in the field of DNA repair: How do repair enzymes detect a small number of DNA lesions in a huge "genomic ocean" of normal DNA? Why are some lesions repaired very efficiently, whereas others are not repaired at all? Using innovative, multi-disciplinary approaches, the research will transform the current static view of the lesion detection process into a 3-D molecular trajectory "movie" in unprecedented detail, thus providing important insights that might eventually lead to development of better ways to prevent the occurrence of DNA damaged-induced cellular defects. Equally important benefits will come from Integration of the research into creative education and outreach programs to promote cross-disciplinary training in Chemistry and Physics for graduate and undergraduate students and to build educational modules, incorporating crosscutting concepts of the new Next Generation Science Standards, to be used by K-12 teachers and their students in the Chicago Public Schools.The XPC complex recognizes diverse, environmentally induced DNA lesions from the genomic DNA, and thus is a key to the initiation of the eukaryotic nucleotide excision repair pathway. The recognition efficiency of the lesions can vary widely depending on the lesion, and certain lesions can evade detection by XPC and thus become resistant to nucleotide excision repair. Previous studies from this research group have suggested a novel "kinetic gating" mechanism in which XPC's ability to discriminate between lesions and normal sites may lie in the kinetics of forming an "open" conformation with the damaged (or normal) nucleotides flipped out. The goal of this project is to rigorously investigate this model by a unique combination of complementary technologies including X-ray crystallography, time-resolved temperature-jump fluorescence spectroscopy and chemical crosslinking. Specific aims are (1) to characterize and compare the dynamics of XPC-induced DNA opening in damaged and normal DNA, (2) to determine the dynamics and structures of lesion recognition using mutant XPC that lack key DNA-binding structural elements, and (3) to elucidate and compare the structure and kinetics of XPC's binding to repair-resistant and -proficient lesions. The results will provide new insights into the dynamics of lesion recognition. Moreover, the unique approaches developed in this study will also be relevant to other gene regulatory and maintenance systems, and may help uncover a new paradigm of protein functions controlled by transient interactions, which have escaped previous detection by other methods.
细胞中的DNA不断受到各种来源的破坏,包括太阳紫外线,工业污染物,香烟烟雾和烧焦的食物。这些DNA损伤,如果不修复,可以阻止重要的细胞功能,并在遗传密码中产生错误,这可能导致细胞死亡或疾病。该项目将解决DNA修复领域的两个关键问题:修复酶如何检测正常DNA巨大“基因组海洋”中的少量DNA损伤? 为什么有些损伤修复得非常有效,而另一些则根本无法修复? 使用创新的,多学科的方法,该研究将病变检测过程的当前静态视图转化为前所未有的细节的3D分子轨迹“电影”,从而提供重要的见解,最终可能导致开发更好的方法来防止DNA损伤诱导的细胞缺陷的发生。 同样重要的好处将来自于将研究整合到创造性教育和推广计划中,以促进研究生和本科生在化学和物理方面的跨学科培训,并建立教育模块,纳入新的下一代科学标准的交叉概念,供K-12教师及其学生在芝加哥公立学校使用。XPC综合体认识到多样化,环境诱导的基因组DNA的DNA损伤,因此是启动真核核苷酸切除修复途径的关键。损伤的识别效率可以根据损伤而广泛变化,并且某些损伤可以逃避XPC的检测,从而变得对核苷酸切除修复具有抗性。该研究小组以前的研究提出了一种新的“动力学门控”机制,其中XPC区分病变和正常位点的能力可能在于形成“开放”构象的动力学,其中受损(或正常)核苷酸被翻转。该项目的目标是通过互补技术的独特组合,包括X射线晶体学,时间分辨温度跳跃荧光光谱和化学交联,严格研究该模型。具体目的是(1)表征和比较受损和正常DNA中XPC诱导的DNA开放的动力学,(2)使用缺乏关键DNA结合结构元件的突变XPC确定损伤识别的动力学和结构,以及(3)阐明和比较XPC与修复抗性和有效损伤结合的结构和动力学。这些结果将为病变识别的动态提供新的见解。 此外,本研究中开发的独特方法也将与其他基因调控和维持系统相关,并可能有助于揭示由瞬时相互作用控制的蛋白质功能的新范式,这些新范式已经逃脱了其他方法的检测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jung-Hyun Min其他文献

Using Minicircles to Test the Role of DNA Bending in Mismatch Recognition by Rad4/XPC
  • DOI:
    10.1016/j.bpj.2017.11.3257
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Sagnik Chakraborty;Debamita Paul;Jung-Hyun Min;Phoebe A. Rice;Anjum Ansari
  • 通讯作者:
    Anjum Ansari
Rapid (Sub-20 µS) intrinsic DNA Fluctuations at Damaged Sites Implicated in Stalling Rad4/XPC DNA Repair Protein During Damage Sensing
  • DOI:
    10.1016/j.bpj.2020.11.320
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Saroj Baral;Sagnik Chakraborty;Debamita Paul;Jung-Hyun Min;Anjum Ansari
  • 通讯作者:
    Anjum Ansari
Evidence for Conformational Capture Mechanism for Damage Recognition by DNA Repairprotein Rad4
  • DOI:
    10.1016/j.bpj.2018.11.2690
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sagnik Chakraborty;Saroj Baral;Debamita Paul;Peter J. Steinbach;Phoebe A. Rice;Jung-Hyun Min;Anjum Ansari
  • 通讯作者:
    Anjum Ansari
Visualizing Spontaneous DNA Dynamics and its Role in Mismatch Recognition by Damage Recognition Protein Rad4
  • DOI:
    10.1016/j.bpj.2017.11.507
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Sagnik Chakraborty;Debamita Paul;Saroj Baral;Hong Mu;Peter J. Steinbach;Suse Broyde;Jung-Hyun Min;Anjum Ansari
  • 通讯作者:
    Anjum Ansari

Jung-Hyun Min的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jung-Hyun Min', 18)}}的其他基金

Investigations Into Dynamic DNA Recognition and Processing During Eukaryotic Nucleotide Excision Repair
真核核苷酸切除修复过程中动态 DNA 识别和加工的研究
  • 批准号:
    2131806
  • 财政年份:
    2022
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Continuing Grant

相似海外基金

Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Studentship
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Fellowship
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Studentship
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 60.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了