Investigations Into Dynamic DNA Recognition and Processing During Eukaryotic Nucleotide Excision Repair

真核核苷酸切除修复过程中动态 DNA 识别和加工的研究

基本信息

  • 批准号:
    2131806
  • 负责人:
  • 金额:
    $ 134.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

DNA undergoes continuous damage from endogenous and environmental sources. Unrepaired DNA damage interferes with cellular functions such as replication and transcription, often resulting in mutations and genome instability. Nucleotide excision repair (NER) is a major DNA repair pathway that removes structurally diverse lesions caused by UV, fuel combustion, industrial pollutants, cigarette smoke, etc. in DNA. Defects in NER can cause hyper-UV sensitivity and increase mutations that lead to diseases including cancers in humans. This project aims to obtain detailed molecular and structural understanding of critical steps in the initiation of NER. Technical innovations in this project will be applicable to many other systems involving complex and dynamic protein-DNA interactions. The research will provide cross-disciplinary training opportunities for undergraduate and graduate researchers and enhance the biomedical research environment at Baylor University through close collaboration with the University of Pennsylvania medical school. Outreach activities will include participation in an Advanced Instrumentation Workshop at Baylor, held for faculty and students from local colleges/universities with limited access to high-level instrumentation; development of a research-based biology curriculum ‘Guardians of the Genome’ in collaboration with a high school in Texas, and public demonstrations through the NSF-funded ‘Portal to the Public’ program at Baylor’s Mayborn Museum.NER is an essential genome maintenance mechanism whose molecular machinery is conserved in all eukaryotes ranging from yeast to humans. Though much is known about the biochemical steps of NER, little is known at the structural level due to challenges in preparing key multiprotein complexes (e.g., TFIIH and Rad4 (yeast homolog of mammalian XPC)) on suitable NER lesions for structural studies. Building on the team’s prior successes and by combining cryo-electron microscopy (cryo-EM), cross-linking/mass spectrometry (XL-MS), and fluorescence lifetime (FLT)-based conformational analyses as well as yeast genetics, this project aims at comprehensive understanding of NER initiation through dynamic 3-D views of the complex structures and their transitions. Specifically, the project will address: (1) How TFIIH-Rad4 first starts unwinding the DNA on bona fide NER lesions, (2) How holoTFIIH is activated for NER by disengaging the transcription-specific TFIIK kinase module, and (3) How the TFIIH-Rad4 complex transitions to lesion verification stage. This research using the yeast system will also open new doors to understanding various NER-linked phenotypes in humans and shed light on how NER may be modulated in vivo.This project is jointly funded by the Genetic Mechanisms and Molecular Biophysics programs of the Molecular and Cellular Biosciences Division in the Biological Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DNA受到来自内源性和环境来源的持续损伤。未修复的DNA损伤干扰细胞功能,如复制和转录,通常导致突变和基因组不稳定。核苷酸切除修复(NER)是一种主要的DNA修复途径,可以去除由紫外线、燃料燃烧、工业污染物、香烟烟雾等引起的DNA结构多样性损伤。NER的缺陷会导致超紫外线敏感性,并增加导致人类癌症等疾病的突变。该项目旨在获得详细的分子和结构的理解,在启动NER的关键步骤。该项目的技术创新将适用于许多其他涉及复杂和动态蛋白质-DNA相互作用的系统。该研究将为本科生和研究生研究人员提供跨学科培训机会,并通过与宾夕法尼亚大学医学院的密切合作,加强贝勒大学的生物医学研究环境。外联活动将包括参加在贝勒为当地学院/大学的教师和学生举办的高级仪器讲习班,这些学院/大学接触高级仪器的机会有限;与得克萨斯州的一所高中合作,开发了一门以研究为基础的生物学课程“基因组监护人”,以及通过国家科学基金会进行的公众示威-NER是一种重要的基因组维护机制,其分子机制在所有真核生物中都是保守的从酵母菌到人类虽然对NER的生化步骤了解很多,但由于制备关键多蛋白复合物(例如,TFIIH和Rad 4(哺乳动物XPC的酵母同源物))对合适的NER损伤进行结构研究。在团队先前成功的基础上,通过结合低温电子显微镜(cryo-EM),交联/质谱(XL-MS)和基于荧光寿命(FLT)的构象分析以及酵母遗传学,该项目旨在通过复杂结构及其过渡的动态三维视图全面了解NER起始。具体来说,该项目将解决:(1)TFIIH-Rad 4如何首先开始解开真正NER病变上的DNA,(2)如何通过脱离转录特异性TFIIK激酶模块激活NER的holoTFIIH,以及(3)TFIIH-Rad 4复合物如何过渡到病变验证阶段。这项使用酵母系统的研究也将为理解各种NER打开新的大门。该项目由生物科学理事会分子和细胞生物科学部的遗传机制和分子生物物理学项目共同资助。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jung-Hyun Min其他文献

Rapid (Sub-20 µS) intrinsic DNA Fluctuations at Damaged Sites Implicated in Stalling Rad4/XPC DNA Repair Protein During Damage Sensing
  • DOI:
    10.1016/j.bpj.2020.11.320
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Saroj Baral;Sagnik Chakraborty;Debamita Paul;Jung-Hyun Min;Anjum Ansari
  • 通讯作者:
    Anjum Ansari
Using Minicircles to Test the Role of DNA Bending in Mismatch Recognition by Rad4/XPC
  • DOI:
    10.1016/j.bpj.2017.11.3257
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Sagnik Chakraborty;Debamita Paul;Jung-Hyun Min;Phoebe A. Rice;Anjum Ansari
  • 通讯作者:
    Anjum Ansari
Evidence for Conformational Capture Mechanism for Damage Recognition by DNA Repairprotein Rad4
  • DOI:
    10.1016/j.bpj.2018.11.2690
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sagnik Chakraborty;Saroj Baral;Debamita Paul;Peter J. Steinbach;Phoebe A. Rice;Jung-Hyun Min;Anjum Ansari
  • 通讯作者:
    Anjum Ansari
Visualizing Spontaneous DNA Dynamics and its Role in Mismatch Recognition by Damage Recognition Protein Rad4
  • DOI:
    10.1016/j.bpj.2017.11.507
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Sagnik Chakraborty;Debamita Paul;Saroj Baral;Hong Mu;Peter J. Steinbach;Suse Broyde;Jung-Hyun Min;Anjum Ansari
  • 通讯作者:
    Anjum Ansari

Jung-Hyun Min的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jung-Hyun Min', 18)}}的其他基金

Unveiling how the XPC nucleotide excision repair complex senses DNA damage
揭示 XPC 核苷酸切除修复复合物如何感知 DNA 损伤
  • 批准号:
    1412692
  • 财政年份:
    2014
  • 资助金额:
    $ 134.71万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Introducing Dynamic Sulfur Chemistry into Hydrogels to Promote Water Retention and Healthy Microbe Growth in Soil
职业:将动态硫化学引入水凝胶中,以促进土壤中的保水性和微生物的健康生长
  • 批准号:
    2337376
  • 财政年份:
    2024
  • 资助金额:
    $ 134.71万
  • 项目类别:
    Continuing Grant
From Low-Grade Plastic Waste Into Timber Substitutes - Dynamic Quality Control for Mixed & Film-Based Streams
从低品位塑料废物到木材替代品 - 混合动态质量控制
  • 批准号:
    10059430
  • 财政年份:
    2023
  • 资助金额:
    $ 134.71万
  • 项目类别:
    Collaborative R&D
Dynamic visualization of the penetration and fixation mechanisms of oil-borne wood preservatives into wood
油性木材防腐剂对木材的渗透和固定机制的动态可视化
  • 批准号:
    23H02281
  • 财政年份:
    2023
  • 资助金额:
    $ 134.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structural and dynamic insights into the mechanisms of mitochondrial AAA proteases
线粒体 AAA 蛋白酶机制的结构和动态见解
  • 批准号:
    RGPIN-2020-05066
  • 财政年份:
    2022
  • 资助金额:
    $ 134.71万
  • 项目类别:
    Discovery Grants Program - Individual
Encoding Dynamic Traffic Flow Analysis into AI for Network-Wide Early Alarming of Traffic-Demand-Influencing Events and Their Impacts
将动态交通流分析编码到人工智能中,以便对影响交通需求的事件及其影响进行全网早期预警
  • 批准号:
    2213459
  • 财政年份:
    2022
  • 资助金额:
    $ 134.71万
  • 项目类别:
    Standard Grant
A dynamic view of GPCR-G protein complexes: insight into partial agonism and G protein selectivity
GPCR-G 蛋白复合物的动态视图:深入了解部分激动和 G 蛋白选择性
  • 批准号:
    BB/W020718/1
  • 财政年份:
    2022
  • 资助金额:
    $ 134.71万
  • 项目类别:
    Research Grant
Packaging of novel Ultra-dyNamiC pHotonic switches and transceivers for integration into 5G radio access network and datacenter sub-systems
新型 Ultra-dyNamiC pHotonic 开关和收发器的封装,用于集成到 5G 无线接入网络和数据中心子系统中
  • 批准号:
    10049387
  • 财政年份:
    2022
  • 资助金额:
    $ 134.71万
  • 项目类别:
    EU-Funded
Integration of few layer graphene (FLG) composites into high-sensitive dynamic photodetectors and sensors exploiting fluctuational transport
将少层石墨烯 (FLG) 复合材料集成到利用波动传输的高灵敏度动态光电探测器和传感器中
  • 批准号:
    561065-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 134.71万
  • 项目类别:
    Alliance Grants
Structural and dynamic insights into the mechanisms of mitochondrial AAA proteases
线粒体 AAA 蛋白酶机制的结构和动态见解
  • 批准号:
    RGPIN-2020-05066
  • 财政年份:
    2021
  • 资助金额:
    $ 134.71万
  • 项目类别:
    Discovery Grants Program - Individual
Structural and dynamic insights into the mechanisms of mitochondrial AAA proteases
线粒体 AAA 蛋白酶机制的结构和动态见解
  • 批准号:
    RGPIN-2020-05066
  • 财政年份:
    2020
  • 资助金额:
    $ 134.71万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了