A Joint Mathematical and Experimental Study on Cholera Transmission Dynamics

霍乱传播动力学的联合数学和实验研究

基本信息

  • 批准号:
    1412826
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Cholera is a severe intestinal infectious disease that remains a serious public health threat in developing countries, especially in Africa and in the Indian subcontinent. This project aims to establish a new mathematical and experimental framework to model, analyze, validate, and simulate cholera transmission dynamics. Incorporating bacterial growth, seasonal variation, and spatial heterogeneity, the framework overcomes the limitations in current cholera epidemic models. Toward this goal, new mathematical models based on differential equations will be introduced, innovative laboratory experiments will be conducted, optimal control study will be carried out, and large-scale high-performance numerical computation will be performed. The project represents an interdisciplinary collaboration between applied mathematics and microbial ecology, integrating mathematical analysis, laboratory experiments, and numerical simulation. The research will improve our understanding of the fundamental dynamics of cholera, which involve multiple transmission routes and complex interaction among human and ecological hosts, bacteria and viruses, and exhibit complex spatial and temporal variations under global climatic and environmental changes.Worldwide cholera outbreaks and their increasing severity, frequency and duration in recent years underscore the gap between the complex mechanism of cholera transmission and our current quantitative understanding of the disease and strategies for its control. The success of this project will not only build a solid knowledge base for understanding cholera dynamics, but also provide important guidelines for public health administration. Meanwhile, education and training activities of this project will involve graduate and undergraduate students in the theory, methods and application of mathematical epidemiology and disease ecology. Outreach activities will focus on demonstrating exponential growth and teaching exponentiation in both educational and community settings. Project results will be widely disseminated to academic and public health communities.
霍乱是一种严重的肠道传染病,在发展中国家,特别是在非洲和印度次大陆,霍乱仍然是一个严重的公共卫生威胁。该项目旨在建立一个新的数学和实验框架,对霍乱传播动力学进行建模、分析、验证和模拟。该框架结合了细菌生长、季节变化和空间异质性,克服了当前霍乱流行模型的局限性。为此,将引入新的基于微分方程的数学模型,进行创新性的实验室实验,开展最优控制研究,并进行大规模高性能数值计算。该项目代表了应用数学和微生物生态学之间的跨学科合作,整合了数学分析、实验室实验和数值模拟。这项研究将提高我们对霍乱基本动态的理解,霍乱涉及多种传播途径和人类与生态宿主、细菌和病毒之间的复杂相互作用,并在全球气候和环境变化下表现出复杂的时空变化。近年来,全球霍乱暴发及其日益严重、频率和持续时间的增加突显了霍乱传播的复杂机制与我们目前对疾病和控制策略的量化认识之间的差距。该项目的成功不仅将为了解霍乱动态奠定坚实的知识基础,也将为公共卫生管理提供重要的指导方针。同时,该项目的教育和培训活动将让研究生和本科生学习数学流行病学和疾病生态学的理论、方法和应用。外联活动将侧重于展示教育和社区环境中的指数增长和教学指数。项目成果将广泛传播给学术界和公共卫生界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fred Dobbs其他文献

Fred Dobbs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fred Dobbs', 18)}}的其他基金

Collaborative Research--Microscopic Islands: Modeling the Theory of Island Biogeography for Aquatic Pathogens Colonizing Marine Aggregates
合作研究--微观岛屿:为海洋聚集体定殖的水生病原体的岛屿生物地理学理论建模
  • 批准号:
    0914429
  • 财政年份:
    2009
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Sedimentary Microbiological Communities Across the Equatorial Pacific Carbon-Flux Gradient: Biomass, Composition, Carbon-Utilization Rates, and Production
赤道太平洋沉积微生物群落碳通量梯度:生物量、组成、碳利用率和产量
  • 批准号:
    9022408
  • 财政年份:
    1991
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Microorganisms on Burrow Walls of Infauna: Predictable or Fortuitous Occurrence?
动物群洞壁上的微生物:可预测还是偶然发生?
  • 批准号:
    9018599
  • 财政年份:
    1991
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
  • 批准号:
    2339032
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Optimising the treatment of inflammation by targeting the phosphorylation of tristetraprolin: a combined experimental and mathematical modelling appro
通过靶向三四脯氨酸磷酸化优化炎症治疗:实验和数学建模相结合的方法
  • 批准号:
    2889903
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
  • 批准号:
    2246724
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
  • 批准号:
    2246723
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
  • 批准号:
    10662098
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
  • 批准号:
    2246725
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Thermochemical energy storage systems: mathematical modelling and experimental evaluation of materials and prototype systems performance
热化学储能系统:材料和原型系统性能的数学建模和实验评估
  • 批准号:
    2687658
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
  • 批准号:
    2150947
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
  • 批准号:
    2150945
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Integrative mathematical, computational, and experimental approach to study biological systems
研究生物系统的综合数学、计算和实验方法
  • 批准号:
    RGPIN-2021-03472
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了