Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
基本信息
- 批准号:2150945
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Long-term survival and coexistence of species in the face of habitat loss and fragmentation is among the most critical concerns faced by ecologists today. This project is an integration of mathematical modeling and experimental analysis of an insect herbivore and predator system to explore the effects of habitat fragmentation, interspecific competition, and predation on the population dynamics and coexistence of species from the patch to the landscape level. Results from this project aim to answer two key ecological questions: (1) For competing species, what effect does the density of the same or different species have on dispersal-reproduction and dispersal competition tradeoffs arising from the evolution of dispersal in fragmented habitats? (2) How does the presence of a shared predator affect the relationship between density and emigration, tradeoffs involving dispersal? The project will also provide significant contributions towards the analysis of mathematical models created to study this behavior via development of new mathematical tools to better understand model dynamics. Finally, results from this study are expected to be applicable to conservation programs and reserve design. This project will involve the training of graduate and undergraduate students through PI-hosted workshops and mentorship of independent research projects. Moreover, an app that estimates key dispersal parameters from field data will be created and made publicly available.This collaborative project comprises integrated reaction-diffusion modeling, mathematical analysis, and experimental research to explore the effects of habitat fragmentation, conditional dispersal, interspecific competition, and predation on the population dynamics and species coexistence from the patch to the landscape level. The Investigators will use diffusive Lotka-Volterra competition and predator-prey systems with nonlinear boundary conditions modeling density dependent emigration (DDE) at the patch and landscape levels. Experiments will be performed using two Tribolium flour beetle species to examine how the DDE relationship and life-history tradeoffs are affected by a shared predator (Xylocoris flavipes). This project is expected to be novel and significant by providing (1) experimental evidence that interspecific competitors and predators affect boundary behavior, the strength and form of DDE, and important life-history tradeoffs linked to species coexistence; (2) the first theoretical framework for the effects of conditional dispersal on the population dynamics and coexistence of competing species and a shared predator in fragmented landscapes; and (3) a significant contribution toward the analysis of systems of elliptic boundary value problems with nonlinear boundary conditions, as new mathematical tools will be developed to better understand the models’ dynamics. Knowledge of species’ life histories, coupled with predictions regarding how competitors and predators can alter the magnitude and form of DDE and life history tradeoffs, can help determine whether existing reserves are adequate for species long-term coexistence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今生态学家面临的最关键问题之一是面对栖息地丧失和破碎的长期生存和物种共存。该项目是对绝缘草食动物和捕食者系统的数学建模和实验分析的整合,以探讨栖息地破碎,种间竞争以及对物种从斑块到景观水平的种群动态和共存的预测的影响。该项目的结果旨在回答两个关键的生态问题:(1)对于竞争物种,相同或不同物种的密度对分散生产和分散竞争的竞争对零散栖息地中分散的演变产生的权衡产生什么影响? (2)共享捕食者的存在如何影响密度与移民之间的关系,涉及分散的权衡?该项目还将为通过开发新的数学工具来更好地理解模型动态的新数学工具而创建的数学模型分析为分析提供了重要贡献。最后,这项研究的结果预计将适用于保护计划和储备设计。该项目将涉及通过PI托管研讨会和独立研究项目的培训研究生和本科生的培训。此外,将创建并公开可用来估计字段数据的关键分散参数的应用程序。该协作项目组成了综合反应扩散建模,数学分析和实验研究,以探讨栖息地破碎,条件分散,种间竞争以及对从斑块到景观水平的种群动态和物种共存的影响。研究人员将在斑块和景观水平上使用具有非线性边界条件建模依赖性移民(DDE)的扩散Lotka-Volterra竞争和Predator-Prey系统。实验将使用两种Tribolium粉甲虫物种进行,以检查DDE关系和生活历史的权衡如何受共享捕食者(Xylocoris flavipes)的影响。通过提供(1)实验证据表明,间种间竞争者和捕食者会影响边界行为,DDE的强度和形式以及与物种共存有关的重要生活历史折衷方案,预计该项目将是新颖和重要的; (2)有条件扩散对竞争物种的种群动态和共享景观中共享的捕食者的影响的第一个理论框架; (3)对于针对非线性边界条件的椭圆边界值问题分析的分析,将开发新的数学工具以更好地理解模型的动态,这是一个重要的贡献。 Knowledge of species’ life histories, coupled with predictions regarding how competitors and predators can alter the magnitude and form of DDE and life history tradeoffs, can help determine whether existing reserves are adequate for species long-term coexistence.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ratnasingham Shivaji其他文献
Positive solutions of multiparameter semipositone <em>p</em>-Laplacian problems
- DOI:
10.1016/j.jmaa.2007.05.085 - 发表时间:
2008-02-15 - 期刊:
- 影响因子:
- 作者:
Kanishka Perera;Ratnasingham Shivaji - 通讯作者:
Ratnasingham Shivaji
Ratnasingham Shivaji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ratnasingham Shivaji', 18)}}的其他基金
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
- 批准号:
2246723 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Collaborative Research: Mathematical and Experimental Analysis of Competitive Ecological Models: Patches, Landscapes, Stage Structure, and Conditional Dispersal on the Boundary
合作研究:竞争性生态模型的数学和实验分析:斑块、景观、阶段结构和边界上的条件扩散
- 批准号:
1853352 - 财政年份:2019
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical and Experimental Analysis of Ecological Models: Patches, Landscapes and Conditional Dispersal on the Boundary
合作研究:生态模型的数学和实验分析:斑块、景观和边界上的条件扩散
- 批准号:
1516519 - 财政年份:2015
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
5th Mississippi State Conference on Differential Equations & Computational Simulations
第五届密西西比州微分方程会议
- 批准号:
0107783 - 财政年份:2001
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
4th Mississippi State Conference on Differential Equations and Computational Simulations at Starkville, Mississippi on May 21-22, 1999
第四届密西西比州微分方程和计算模拟会议,1999 年 5 月 21-22 日在密西西比州斯塔克维尔举行
- 批准号:
9971465 - 财政年份:1999
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Third Mississippi State Conference on Differential Equations and Computational Simulations, May 16-17, 1997
第三届密西西比州微分方程和计算模拟会议,1997 年 5 月 16-17 日
- 批准号:
9707261 - 财政年份:1997
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Second Mississippi State Conference on Differential Equation Equasions & Computational Simulations; April 7-8, 1995; Mississippi State, MI
第二届密西西比州微分方程会议
- 批准号:
9510552 - 财政年份:1995
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Mathematical Sciences: Semi-Positone Problems II
数学科学:半正音问题 II
- 批准号:
9215027 - 财政年份:1993
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Southeastern-Atlantic Regional Conference On Differential Equations
数学科学:东南大西洋地区微分方程会议
- 批准号:
9113171 - 财政年份:1991
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Analysis of Semi-Positone Problems
数学科学:半正音问题的数学分析
- 批准号:
8905936 - 财政年份:1989
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
相似国自然基金
热辐射影响的可压缩流体模型的数学问题研究
- 批准号:12371222
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于“效应成分-谱学/药效学/数学关联数据挖掘”整合的银柴胡质量标志物发现研究
- 批准号:82360769
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
2023年(第四届)国际生物数学与医学应用研讨会
- 批准号:12342004
- 批准年份:2023
- 资助金额:8.00 万元
- 项目类别:专项项目
基于非交换留数理论和Gauss-Bonnet定理的流形几何性质研究
- 批准号:12301063
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
高维零磁扩散磁流体力学方程组若干数学问题的研究
- 批准号:12371227
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant