Analytical representation of protein distributions in stochastic models of gene expression
基因表达随机模型中蛋白质分布的分析表示
基本信息
- 批准号:1413111
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the fundamental problems in biology is elucidating the molecular mechanisms that give rise to phenotypic variations among individuals in a population. It has been shown that phenotypic variations can arise without any underlying differences in the genotype or environmental factors. Such "nongenetic individuality" is observed in diverse cellular processes, ranging from bacterial persistence to HIV-1 viral infections, and is driven by randomness (noise) in the cellular levels of gene expression products such as mRNAs and proteins. To quantify the effects of noise in gene expression, recent single-cell experiments have obtained probability distributions characterizing protein levels across a population of cells. Correspondingly, there is a need to develop a general analytical framework for modeling and interpretation of the distributions obtained from such single-cell experiments that will lead to quantitative insights into how noise in gene expression is regulated. The goal of this project is to develop new approaches for obtaining analytical results for protein distributions in models of gene expression and its regulation. The project will contribute to a fundamental understanding of the role of noise in gene expression and its regulation in diverse cellular processes. The analysis requires tools and approaches from physics and applied mathematics and will be integrated with teaching efforts to effectively train students and future scientists in this fast-developing field of interdisciplinary research.Noise in gene expression is generally analyzed using coarse-grained stochastic models. However, obtaining exact analytical expressions for the corresponding protein distributions has been a challenging for all but the simplest models. The project research will involve integration of tools from queueing theory with approaches based on partitioning of Poisson processes to address such challenges. The approaches developed will be used to obtain both exact and approximate analytical results for models of gene expression and its regulation. The resulting analysis of models with regulatory mechanisms such as bursting, feedback and promoter-based regulation will lead to quantitative insights into noise characteristics of the basic building blocks of genetic circuits. The project research will also lead to analytical results that characterize the role of noisy inputs in regulating simple biochemical switches and suggest new approaches for estimating model parameters based on observations of noise. The analytical results derived in the project will have multiple applications ranging from synthetic biology to understanding phenotypic variation in clonal populations.
生物学的基本问题之一是阐明引起群体中个体表型变异的分子机制。已经表明,表型变异可以在基因型或环境因素没有任何潜在差异的情况下出现。这种“非遗传个体”在不同的细胞过程中观察到,从细菌持久性到HIV-1病毒感染,并且是由mRNA和蛋白质等基因表达产物的细胞水平的随机性(噪声)驱动的。为了量化基因表达中噪声的影响,最近的单细胞实验获得了表征细胞群中蛋白质水平的概率分布。相应地,需要开发一个通用的分析框架,用于对从此类单细胞实验中获得的分布进行建模和解释,这将有助于定量了解基因表达中的噪声是如何调节的。该项目的目标是开发新方法来获得基因表达及其调控模型中蛋白质分布的分析结果。该项目将有助于从根本上理解噪声在基因表达中的作用及其在不同细胞过程中的调节。该分析需要物理和应用数学的工具和方法,并将与教学工作相结合,以便在这个快速发展的跨学科研究领域有效地培训学生和未来的科学家。基因表达中的噪声通常使用粗粒度随机模型进行分析。然而,除了最简单的模型之外,获得相应蛋白质分布的精确分析表达式对于所有模型来说都是一个挑战。该项目研究将涉及将排队论工具与基于泊松过程划分的方法相集成,以应对此类挑战。开发的方法将用于获得基因表达及其调控模型的精确和近似分析结果。对具有突发、反馈和基于启动子的调节等调节机制的模型的分析将导致对遗传电路基本构建模块的噪声特征的定量见解。该项目研究还将得出分析结果,描述噪声输入在调节简单生化开关中的作用,并提出基于噪声观察估计模型参数的新方法。 该项目得出的分析结果将具有多种应用,从合成生物学到了解克隆群体的表型变异。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rahul Kulkarni其他文献
Clinical and microbiological profile of infections during induction phase of acute myeloid leukemia.
急性髓系白血病诱导期感染的临床和微生物学特征。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Parikh;P. Goswami;A. Anand;H. Panchal;A. Patel;Rahul Kulkarni;Bhadresh Shastri - 通讯作者:
Bhadresh Shastri
HIV associated Burkitt's lymphoma.
HIV 相关的伯基特淋巴瘤。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
A. Basavaraj;A. Shinde;Rahul Kulkarni;D. Kadam;A. Chugh - 通讯作者:
A. Chugh
Vision Paper: How might we find generalizable ‘rules of life’ that govern how a large number of signals control integrative biological function?
愿景论文:我们如何找到可概括的“生命规则”来控制大量信号如何控制综合生物功能?
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
E. Gering;Haiyan Hu;Rahul Kulkarni;Arianna Tamvacakis - 通讯作者:
Arianna Tamvacakis
Development and validation of a highly sensitive LC-MS/MS method for simultaneous quantitation of ethionamide and ethionamide sulfoxide in human plasma: application to a human pharmacokinetic study.
开发和验证用于同时定量人血浆中乙硫异烟胺和乙硫异烟胺亚砜的高灵敏度 LC-MS/MS 方法:在人类药代动力学研究中的应用。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
A. Deshpande;S. Gurav;R. Punde;V. Zambre;Rahul Kulkarni;S. Pandey;A. Mungantiwar;R. Mullangi - 通讯作者:
R. Mullangi
Rahul Kulkarni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rahul Kulkarni', 18)}}的其他基金
Large Deviations and Driven Processes for Stochastic Models of Gene Expression and Its Regulation
基因表达及其调控随机模型的大偏差和驱动过程
- 批准号:
1854350 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Stochastic Modeling of Post-Transcriptional Regulation of Gene Expression in Bacteria
细菌基因表达转录后调控的随机模型
- 批准号:
1307067 - 财政年份:2012
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Stochastic Modeling of Post-Transcriptional Regulation of Gene Expression in Bacteria
细菌基因表达转录后调控的随机模型
- 批准号:
0957430 - 财政年份:2010
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
相似国自然基金
稀疏表示及其在盲源分离中的应用研究
- 批准号:61104053
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
约化群GL(n, F)的表示--F是非阿基米德局部域
- 批准号:10701034
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
信号盲处理的稀疏表示方法
- 批准号:60475004
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Integrative deep learning algorithms for understanding protein sequence-structure-function relationships: representation, prediction, and discovery
用于理解蛋白质序列-结构-功能关系的集成深度学习算法:表示、预测和发现
- 批准号:
10712082 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Causal Representation Learning for the Spatial Analysis of Transcriptomic and Imaging Data in Tissue Contexts
用于组织环境中转录组和成像数据空间分析的因果表示学习
- 批准号:
10471669 - 财政年份:2022
- 资助金额:
$ 17万 - 项目类别:
Sleep and Word Learning Over Time in Adults with Moderate-Severe Traumatic Brain Injury
中度至重度创伤性脑损伤成人的睡眠和单词学习随时间的变化
- 批准号:
10362555 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Development of a new computational method for predicting drug - target interactions using a TSR-based representation of 3-D structures
开发一种新的计算方法,使用基于 TSR 的 3-D 结构表示来预测药物-靶点相互作用
- 批准号:
10363369 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Investigating spatial representation in hippocampal entorhinal circuit of knock in Alzheimer's model
研究阿尔茨海默病模型中海马内嗅回路敲击的空间表征
- 批准号:
10368018 - 财政年份:2020
- 资助金额:
$ 17万 - 项目类别:
Investigating spatial representation in hippocampal entorhinal circuit of knock in Alzheimer's model
研究阿尔茨海默病模型中海马内嗅回路敲击的空间表征
- 批准号:
10396364 - 财政年份:2020
- 资助金额:
$ 17万 - 项目类别:
Naturalistic Event Representation as a Novel Biomarker of Preclinical Alzheimer's Disease
自然事件表示作为临床前阿尔茨海默病的新型生物标志物
- 批准号:
9912695 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Automatic Coding of Therapist and Client Language in Motivational Interviewing to Predict Reductions in Alcohol Use and Problems Using Machine-based Dyadic Multimodal Representation Learning
使用基于机器的二元多模态表示学习在动机访谈中自动编码治疗师和客户语言以预测酒精使用的减少和问题
- 批准号:
10001411 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Automatic Coding of Therapist and Client Language in Motivational Interviewing to Predict Reductions in Alcohol Use and Problems Using Machine-based Dyadic Multimodal Representation Learning
使用基于机器的二元多模态表示学习在动机访谈中自动编码治疗师和客户语言以预测酒精使用的减少和问题
- 批准号:
10473711 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别: