On Heavier Chalcogen (Se and Te) Interfacial Chemistry and Charge Transfer in Monolayer-Protected Metal Nanoparticles

单层保护金属纳米粒子中重硫族元素(Se 和 Te)界面化学和电荷转移

基本信息

  • 批准号:
    1413429
  • 负责人:
  • 金额:
    $ 49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Metal nanoparticles are metal particles of very small (nanometer scale) dimensions. They possess novel chemical and physical properties that are very different from those of large particles or bulk metals. Dr. YuYe Tong of Georgetown University and Dr. Thomas Allison at the National Institute of Standards and Technology conduct research to gain a better understanding of the structural parameters that govern the properties of metal nanoparticles. The long-term goal is to harness the novel properties of nanoparticles for practical applications (such as electronic or optical devices, biomedical diagnosis, and drug delivery). This project provides interdisciplinary research opportunities to students, training them in the use of the state-of-the-art instruments for studying nanoparticles. Through Georgetown University's partnership with the Cesar Chavez Public Charter Schools in Southeast Washington DC, which have very high population of students of underrepresented groups or from low-income families, Dr. Tong participates in a project to help develop new chemistry curricula for local charter schools. This project serves as a springboard to attract more women and underrepresented students to STEM fields.Dr. Tong and Dr. Allison explore the use of heavier chalcogen (Se and Te) as alternative anchoring elements to the prevailingly used sulfur for attaching organic molecular wires to metal surfaces. Using a combination of experimental techniques and Density Functional Theory (DFT) computations, they aim to gain a better mechanistic understanding of the metal-chalcogenolate interfacial chemistry and its ramifications on charge transfer/transport in single monolayer-protected nanoparticle (MPN) and MPN assemblies. Specifically, this research entails: 1) the synthesis of different sizes (1 to 5 nm) of nanoparticles of different metal elements (Au, Ag, Cu, Pt, and Pd), which are protected with ligands of different organic backbones (alkyl and aryl), alkyl chain lengths (C6, C8, and C12), and anchoring chalcogen elements (Se and Te); 2) the characterization of the afore-synthesized MPNs by in situ electrochemical (EC) spectroscopic (NMR/IR/Raman) techniques and ex situ X-ray photoemission spectroscopy; and 3) comparative mechanistic investigations of charge transfer through a single MPN and MPN assemblies using EC scanning tunneling microscopy and traditional EC measurements.
金属纳米颗粒是非常小(纳米尺度)尺寸的金属颗粒。它们具有与大颗粒或大块金属截然不同的化学和物理特性。乔治敦大学的童玉烨博士和美国国家标准与技术研究所的托马斯·艾利森博士进行研究,以更好地了解控制金属纳米颗粒特性的结构参数。长期目标是利用纳米颗粒的新特性进行实际应用(如电子或光学设备、生物医学诊断和药物输送)。该项目为学生提供跨学科的研究机会,训练他们使用最先进的仪器来研究纳米颗粒。乔治城大学与华盛顿特区东南部的塞萨尔·查韦斯公立特许学校(Cesar Chavez Public Charter Schools)合作,帮助当地特许学校开发新的化学课程。这些学校有很多来自弱势群体或低收入家庭的学生。该项目是吸引更多女性和代表性不足的学生进入STEM领域的跳板。Tong和Allison博士探索使用较重的硫(Se和Te)作为锚定元素,替代目前普遍使用的将有机分子线连接到金属表面的硫。利用实验技术和密度泛函数理论(DFT)计算的结合,他们旨在更好地理解金属-硫代酚酸酯界面化学及其对单层保护纳米粒子(MPN)和MPN组件中电荷转移/输运的影响。具体而言,本研究需要:1)合成不同尺寸(1 ~ 5nm)的不同金属元素(Au、Ag、Cu、Pt和Pd)纳米颗粒,这些纳米颗粒被不同有机骨架(烷基和芳基)、烷基链长(C6、C8和C12)和锚定的硫元素(Se和Te)的配体保护;2)利用原位电化学(EC)光谱(NMR/IR/Raman)技术和非原位x射线光电发射光谱对上述合成的mpn进行表征;3)利用电子扫描隧道显微镜和传统电子测量方法对单个MPN和MPN组件的电荷转移机制进行比较研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YuYe Tong其他文献

YuYe Tong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YuYe Tong', 18)}}的其他基金

REU Site: Chemistry Research at Georgetown University
REU 网站:乔治城大学化学研究
  • 批准号:
    1156788
  • 财政年份:
    2012
  • 资助金额:
    $ 49万
  • 项目类别:
    Continuing Grant
Electron doping in magnetic semiconductors
磁性半导体中的电子掺杂
  • 批准号:
    1112387
  • 财政年份:
    2011
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
DDEP: In Situ Ultra Fast Time-Resolved Infrared Spectroscopic Study on Shape Controlled Pt Nanoparticles
DDEP:形状控制 Pt 纳米粒子的原位超快时间分辨红外光谱研究
  • 批准号:
    1130454
  • 财政年份:
    2011
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
International Collaboration in Chemistry: Nanoscale Single-Crystal Ensemble Electrocatalysis for Fuel Cell Applications
国际化学合作:燃料电池应用的纳米级单晶系综电催化
  • 批准号:
    0923910
  • 财政年份:
    2009
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
An Electrochemical NMR Investigation of Ligand-Protected Metal Quantum Dots: Metal-Ligand Interactions and Ramifications in Molecular Electronics
配体保护的金属量子点的电化学核磁共振研究:分子电子学中的金属-配体相互作用和衍生
  • 批准号:
    0456848
  • 财政年份:
    2005
  • 资助金额:
    $ 49万
  • 项目类别:
    Continuing Grant

相似海外基金

Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
  • 批准号:
    EP/Y00244X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49万
  • 项目类别:
    Research Grant
Thesis title Enantioselective Chalcogen Bonding Catalysis
论文题目 对映选择性硫属键合催化
  • 批准号:
    2883873
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Studentship
Development of chalcogen-containing novel carbon chemical species and their application to direct molecular transformation
含硫族新型碳化学物质的开发及其在直接分子转化中的应用
  • 批准号:
    23K13751
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Peierls transition and van der Waals interaction in 1D chains of chalcogen elements
硫族元素一维链中的 Peierls 跃迁和范德华相互作用
  • 批准号:
    23K04518
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Dispelling Chemical Misconceptions to Discover New Pnictogen-Chalcogen Bonding/Reactivity and Enhance Transfer Student Success
职业:消除化学误解,发现新的磷元素-硫元素键/反应性并提高转学生的成功率
  • 批准号:
    2236365
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Continuing Grant
Applications of Chalcogen-based Oxidation State Alternating Organocatalysts
硫族氧化态交替有机催化剂的应用
  • 批准号:
    2154593
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Continuing Grant
CAREER: Studies of Chalcogen Bonding-Mediated Assembly towards Porous Crystalline Frameworks, Hierarchical Assemblies, and Multicomponent Materials
职业:硫族键介导的多孔晶体框架组装、分级组装和多组分材料的研究
  • 批准号:
    2143623
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Continuing Grant
Towards the Rational Design of Ni & Co free Chalcogen Anion Redox Cathode Materials
走向Ni的合理设计
  • 批准号:
    2127519
  • 财政年份:
    2021
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
Exploiting Chalcogen Bonding and Non-Covalent Interactions in Isochalcogenourea Catalysis: Catalyst Preparation, Mechanistic Studies and Applications
在异硫属脲催化中利用硫属键合和非共价相互作用:催化剂制备、机理研究和应用
  • 批准号:
    EP/T023643/1
  • 财政年份:
    2020
  • 资助金额:
    $ 49万
  • 项目类别:
    Research Grant
Development of organic mechanochromic materials with room-temperature phosphorescence utilizing chalcogen bonding
利用硫属键合开发具有室温磷光的有机机械致变色材料
  • 批准号:
    19K15542
  • 财政年份:
    2019
  • 资助金额:
    $ 49万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了