EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica

EAGER:南极洲中部横贯山脉的地表变化和光谱分析

基本信息

  • 批准号:
    1414378
  • 负责人:
  • 金额:
    $ 16.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-01-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Intellectual Merit:Ice free rock outcrops in the Transantarctic Mountains provide the only accessible windows into the interior of the ice covered Antarctic continent; they are extremely remote and difficult to study. This region also hosts the highest latitude ice-free valley systems on the planet. Based on two interdisciplinary workshops, the Transantarctic region near the Shackleton Glacier has been identified as a high priority site for further studies, with a field camp proposed for the 2015-2016 Antarctic field season. The geology of this region has been studied since the heroic era of Antarctic exploration, in the early 1900s, but geologic mapping has not been updated in more than forty years, and existing maps are at poor resolution (typically 1:250,000).This project would utilize the WorldView-2 multispectral orbital dataset to supplement original geologic mapping efforts near the proposed 2015-2016 Shackleton Glacier camp. The WorldView-2 satellite is the only multispectral orbiting sensor capable of imaging the entirety of the Transantarctic Mountains, and all necessary data are currently available to the Polar Geospatial Center. High-latitude atmospheric correction of multispectral data for geologic investigations has only recently been tested, but has never been applied to WorldView-2 data, and never for observations of this type. Therefore, this research will require technique refinements and methodological developements to accomplish the goals. Atmospheric correction refinements and spectral validation will be made possible by laboratory spectroscopic measurements of rock samples currently stored at the U.S. Polar Rock Repository, at the Ohio State University. This project will result in spectral unit identification and boundary mapping at a factor of four higher resolution (1:62,500) than previous geologic mapping efforts, and more detailed investigations (1:5,123) are possible at resolutions more than a factor of forty-eight improved over previous geologic maps. Validated spectral mapping at these improved resolutions will allow for detailed lithologic, and potentially biologic, mapping using existing satellite imagery. This will greatly enhance planning capabilities, thus maximizing the efficiency of the scientific research and support logistics associated with the Shackleton Glacier deep field camp.Broader impacts:The proposed work will have multiple impacts on the broader scientific community. First, the refinement of existing atmospheric correction methodologies, and the development of new spectral mapping techniques, may substantially improve our ability to remotely investigate geologic surfaces throughout Antarctica. The ability to validate this orbital dataset will be of use to both current and future geologic, environmental, and biologic studies, potentially across the entire continent. The project will yield a specific spectral mapping product (at a scale of 1:62,500) to the scientific community by a targeted date of 01 March 2014, in order to support proposals submitted to the National Science Foundation for the proposed 2015/2016 Shackleton Glacier camp. High-resolution spectral mapping products (up to a maximum resolution of 2 meters per pixel) will also be generated for regions of particular scientific interest. The use of community based resources, such as Polar Geospatial Center (PGC) imagery and U.S. Polar Rock Repository rock samples, will generate new synergistic and collaborative research possibilities within the Antarctic research community. In addition, the lead PI (Salvatore) is an early career scientist who is active in both Antarctic and planetary remote sensing. There are overlaps in the calibration, correction, and validation of remote spectral datasets for Antarctic and planetary applications which can lead to benefits and insights to an early career PI, as well as the two communities.
知识分子的优点:跨北极山脉中的无冰块露头为冰覆盖的南极大陆的内部提供了唯一可进入的窗户。他们非常遥远,很难学习。 该地区还拥有地球上最高纬度的无冰谷系统。基于两个跨学科研讨会,Shackleton冰川附近的跨北极区域已被确定为进一步研究的高优先地点,并提议为2015 - 2016年南极野外赛季进行野外训练。 自从南极探索的英勇时代(1900年代初)以来,该地区的地质学已经进行了研究,但是在40年以上的地质映射尚未进行更新,现有地图的分辨率很差(通常为1:250,000)(通常为1:250,000)。该项目将利用世界观2-2-2-2多光谱轨道数据的序列地地理位置,以补充原始的地质范围,并在2015年群落中销售量子。 Worldview-2卫星是唯一能够对整个跨抗山脉进行成像的多光谱轨道传感器,目前所有必要的数据目前都可用于极地地理空间中心。对地质研究的多光谱数据的高纬度大气校正直到最近才进行了测试,但从未应用于Worldview-2数据,也从未对这种类型的观察进行观察。 因此,这项研究将需要技术的改进和方法论发展来实现目标。 通过实验室光谱测量目前存储在俄亥俄州立大学的美国极地岩石存储库中的岩石样品的实验室光谱测量将使大气校正的细化和光谱验证成为可能。 该项目将比以前的地质映射工作高出四个分辨率(1:62,500)的光谱单位识别和边界映射,并且可以在分辨率上进行更详细的研究(1:5,123),超过48个因素,比以前的地质图改善了48个因素。 在这些改进的分辨率上经过验证的光谱映射将允许使用现有卫星图像进行详细的岩性和潜在的生物学映射。 这将极大地增强计划能力,从而最大程度地提高与Shackleton Glacier Deep Field Camp相关的科学研究和支持物流的效率。Broader的影响:拟议的工作将对更广泛的科学界产生多种影响。首先,现有大气校正方法的完善以及新的光谱映射技术的开发可能会大大提高我们远程研究整个南极地质表面的能力。验证该轨道数据集的能力将用于当前和未来的地质,环境和生物学研究。该项目将在2014年3月1日的有针对性日期之前向科学界产生特定的光谱映射产品(比例为1:62,500),以支持提交给国家科学基金会2015/2016 Shackleton Glacier Camp提交的建议。高分辨率光谱映射产物(每个像素的最大分辨率最高分辨率为2米)也将用于具有特殊科学意义的区域。使用基于社区的资源,例如Polar Geospatial Center(PGC)图像和美国Polar Rock Rockority Rock样本,将在南极研究界产生新的协同和协作研究可能性。 此外,PI(Salvatore)是一位早期的职业科学家,他都活跃于南极和行星遥感。 南极和行星应用的远程光谱数据集的校准,校正和验证存在重叠,这可以为早期职业生涯以及两个社区带来利益和见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Salvatore其他文献

Mark Salvatore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Salvatore', 18)}}的其他基金

Collaborative Research: Moving Beyond the Margins: Modeling Water Availability and Habitable Terrestrial Ecosystems in the Polar Desert of the McMurdo Dry Valleys
合作研究:超越边缘:麦克默多干谷极地沙漠的水资源可用性和宜居陆地生态系统建模
  • 批准号:
    2046260
  • 财政年份:
    2021
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Remote Characterization of Microbial Mats in Taylor Valley, Antarctica, through In Situ Sampling and Spectral Validation
合作研究:通过原位采样和光谱验证对南极洲泰勒谷微生物垫进行远程表征
  • 批准号:
    1745053
  • 财政年份:
    2018
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant
Collaborative Proposal: EarthCube Integration: ICEBERG: Imagery Cyberinfrastructure and Extensible Building-Blocks to Enhance Research in the Geosciences
合作提案:EarthCube 集成:ICEBERG:图像网络基础设施和可扩展构建模块,以加强地球科学研究
  • 批准号:
    1740450
  • 财政年份:
    2017
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant
EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica
EAGER:南极洲中部横贯山脉的地表变化和光谱分析
  • 批准号:
    1758224
  • 财政年份:
    2017
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant
EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica
EAGER:南极洲中部横贯山脉的地表变化和光谱分析
  • 批准号:
    1613825
  • 财政年份:
    2015
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Standard Grant

相似国自然基金

还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
  • 批准号:
    22379027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
  • 批准号:
    52374316
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于电荷诱导红外光响应法的表面电荷瞬态测量及其诱发沿面放电机制
  • 批准号:
    52377143
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
钛合金表面微区电势差特征促细胞功能表达及其免疫微环境作用机制
  • 批准号:
    32371390
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
在幼年型粒单核细胞白血病中鉴定CD69作为其白血病干细胞新表面标记的实验研究
  • 批准号:
    82370146
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Structural characterization of tau aggregation variability and maturity in isolated cell types of the brain
大脑分离细胞类型中 tau 聚集变异性和成熟度的结构表征
  • 批准号:
    10721681
  • 财政年份:
    2023
  • 资助金额:
    $ 16.86万
  • 项目类别:
Mineral Coated Microparticles for Stabilization and Delivery of Complexed mRNA for Healing of Long Bone Defects
用于稳定和递送复合 mRNA 的矿物涂层微粒,用于治疗长骨缺损
  • 批准号:
    10464358
  • 财政年份:
    2023
  • 资助金额:
    $ 16.86万
  • 项目类别:
Identifying differences in dynamics and residual structure of intrinsically disordered domains between monomer and fibers: using alpha-synuclein as a model
识别单体和纤维之间本质无序域的动力学和残余结构的差异:使用α-突触核蛋白作为模型
  • 批准号:
    10607325
  • 财政年份:
    2023
  • 资助金额:
    $ 16.86万
  • 项目类别:
Spatial variability in stable isotopes from Lesotho surface waters: insights into regional moisture transport.
莱索托地表水稳定同位素的空间变异:深入了解区域水分输送。
  • 批准号:
    2843424
  • 财政年份:
    2023
  • 资助金额:
    $ 16.86万
  • 项目类别:
    Studentship
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
  • 批准号:
    10814620
  • 财政年份:
    2023
  • 资助金额:
    $ 16.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了