EAGER: Convex Optimization Algorithms for 21st Century Challenges

EAGER:应对 21 世纪挑战的凸优化算法

基本信息

  • 批准号:
    1415498
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-03-01 至 2017-02-28
  • 项目状态:
    已结题

项目摘要

Motivation. The need for faster and better optimization algorithms is ubiquitous and ever increasing. Besides the sheer size of data to be analyzed, the nature of modern optimization instances presents formidable challenges with data being partially specified, uncertain or high-dimensional data. Convex optimization remains the principal workhorse, but needs to be developed in several ways to meet these challenges. This project aims to do so by (a) developing faster algorithms for convex optimization using randomization (b) making optimization algorithms robust to uncertainty, and (c) providing robust guarantees when the input is only partially specified or uncertain.Intellectual Merit. The foundational ideas of this project are novel, timely and will extend the frontier of our knowledge of optimization. They integrate multiple disciplines --- operations research, theoretical computer science, signal processing and statistical learning --- with the common goal of fast, robust and versatile convex optimization algorithms. Trading off accuracy for efficiency, the use of randomization, guarantees in the face of uncertain data and new formulations of convex optimization problems for learning, are all promising methods with wide applicability. Broader Impact. This project is motivated by several general problems in applied mathematics that touch many different application areas. Progress on these problems, which include structured matrix factorization and estimation, graph estimation, robust multi-stage decision making and signal recovery, will have direct and lasting impact in applications as diverse as medical imaging, radar array processing, passive acoustic imaging, and digital communications. Mentoring and collaborating with a graduate student and a shared postdoctoral student across multiple EAGERs are additional aspects of the broader impact of this EAGER.
动机。对更快更好的优化算法的需求无处不在且不断增长。除了要分析的数据量巨大之外,现代优化实例的性质还带来了巨大的挑战,即数据是部分指定的、不确定的或高维数据。凸优化仍然是主要的主力,但需要通过多种方式进行开发来应对这些挑战。该项目的目标是通过(a)使用随机化开发更快的凸优化算法(b)使优化算法对不确定性具有鲁棒性,以及(c)在输入仅部分指定或不确定时提供稳健的保证。智力优点。该项目的基本思想新颖、及时,将扩展我们优化知识的前沿。它们整合了多个学科——运筹学、理论计算机科学、信号处理和统计学习——其共同目标是快速、稳健和通用的凸优化算法。权衡准确性以换取效率、使用随机化、面对不确定数据的保证以及用于学习的凸优化问题的新公式,都是具有广泛适用性的有前景的方法。更广泛的影响。该项目的动机是应用数学中涉及许多不同应用领域的几个常见问题。 这些问题的进展,包括结构化矩阵分解和估计、图估计、鲁棒的多级决策和信号恢复,将对医学成像、雷达阵列处理、无源声成像和数字通信等多种应用产生直接和持久的影响。在多个 EAGER 中与一名研究生和一名共同的博士后学生进行指导和合作是该 EAGER 更广泛影响的其他方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Santosh Vempala其他文献

On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems
  • DOI:
    10.1007/s10107-004-0506-y
  • 发表时间:
    2004-05-21
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Robert Carr;Santosh Vempala
  • 通讯作者:
    Santosh Vempala
The Mirror Langevin Algorithm Converges with Vanishing Bias
镜像 Langevin 算法收敛并消除偏差
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruilin Li;Molei Tao;Santosh Vempala;Andre Wibisono
  • 通讯作者:
    Andre Wibisono
Nearest Neighbors
  • DOI:
    10.1007/978-3-319-17885-1_100845
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Santosh Vempala
  • 通讯作者:
    Santosh Vempala

Santosh Vempala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Santosh Vempala', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2023 PROTRAC:Probabilistic Trajectories in Algorithms and Combinatorics
旅行:2023 年 NSF 学生旅行补助金 PROTRAC:算法和组合学中的概率轨迹
  • 批准号:
    2340325
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of Deep Learning: Theory, Robustness, and the Brain​
协作研究:深度学习的基础:理论、稳健性和大脑 —
  • 批准号:
    2134105
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fundamental Challenges in Optimization
合作研究:AF:中:优化中的基本挑战
  • 批准号:
    2106444
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
AF: Small: Fundamental High-Dimensional Algorithms
AF:小:基本的高维算法
  • 批准号:
    2007443
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: A Computational Theory of Brain Function
AF:小:协作研究:脑功能的计算理论
  • 批准号:
    1909756
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
TRIPODS+X: RES: Collaborative Research: Scaling Up Descriptive Epidemiology and Metabolic Network Models via Faster Sampling
TRIPODS X:RES:协作研究:通过更快的采样扩大描述性流行病学和代谢网络模型
  • 批准号:
    1839323
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF:Small: Fundamental High-Dimensional Algorithms
AF:Small:基本的高维算法
  • 批准号:
    1717349
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: The Power of Randomness for Approximate Counting
AF:中:协作研究:近似计数的随机性的力量
  • 批准号:
    1563838
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
AF: EAGER: Fundamental High-Dimensional Algorithms
AF:EAGER:基本高维算法
  • 批准号:
    1555447
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AF: Small: Fundamental High-Dimensional Algorithms based on Convex Geometry and Spectral Methods
AF:小:基于凸几何和谱方法的基本高维算法
  • 批准号:
    1217793
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Interplay between Convex and Nonconvex Optimization for Control
职业:凸和非凸优化控制之间的相互作用
  • 批准号:
    2340713
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
  • 批准号:
    2401242
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
  • 批准号:
    2240789
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Demystifying Deep Machine Learning Models using Convex Optimization for Reliable AI
职业:使用凸优化揭开深度机器学习模型的神秘面纱,实现可靠的人工智能
  • 批准号:
    2236829
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
  • 批准号:
    2240788
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Computation of Diverse Solutions in Discrete Convex Optimization Problems
离散凸优化问题的多样解的计算
  • 批准号:
    23K10995
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
  • 批准号:
    10674871
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Designing Faster Algorithms by Connecting Structural Combinatorics and Convex Optimization
通过连接结构组合学和凸优化来设计更快的算法
  • 批准号:
    557770-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Structured convex optimization with applications
结构化凸优化及其应用
  • 批准号:
    RGPIN-2019-07199
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
  • 批准号:
    10504516
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了