Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
基本信息
- 批准号:10674871
- 负责人:
- 金额:$ 76.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAutomobile DrivingBiologicalBiologyBipolar DisorderBrainCISH geneCell modelChromatinClinicalCodeCollaborationsComputer AnalysisDataDevelopmental Delay DisordersDiffusionDiseaseDocumentationEtiologyFormulationFutureGene Expression RegulationGenesGeneticGenetic ProcessesGenetic RiskGenetic VariationGenetic studyGenotypeGraphGrowthHealthHeterogeneityHumanInternationalLate-Onset DisorderLicensingLinkage DisequilibriumMajor Depressive DisorderMapsMental disordersMethodsModelingMolecular ConformationNatureNetwork-basedPathogenesisPathway interactionsPatternPhenotypePrincipal Component AnalysisProcessQuantitative Trait LociRare DiseasesRegulator GenesRegulatory ElementRegulatory PathwayReproducibilityRoleSample SizeSamplingSchizophreniaSourceStructureSymptomsTherapeutic InterventionTransgenesTranslatingUntranslated RNAVariantWorkautism spectrum disordercancer genomicscausal variantcell typecomorbiditycomputational suitedevelopmental diseasedisorder riskdriver mutationearly onset disorderempowermentexome sequencingexpectationgene networkgene regulatory networkgenetic associationgenetic variantgenome sequencinggenome wide association studyimprovedinnovationneuropsychiatric disorderneuropsychiatrynovelphenomepsychiatric genomicsrare variantsingle nucleus RNA-sequencingstatisticstherapeutic targettrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Driven by international open scientific collaboration through groups such as the Psychiatric Genomics
Consortium (PGC, in which co-I Mullins is a leading analyst) both genome-wide association studies
(GWAS) and whole exome and genome sequencing studies of neuropsychiatric disorders (NPDs) are
rapidly increasing in sample size. With this increased sample size comes increased statistical power to
detect many more, smaller genetic effects on disease risk, known as the polygenic component. The
challenge now is to understand what these findings tell us about NPD risk, etiology and biology. Here we
propose a suite of methods for multi-trait analysis to determine underlying latent structure, causal
networks of genes and traits, and enriched data-derived regulatory pathways. We make extensive use of
convex optimization methods that allow both computational efficiency and guarantees on reproducibility.
In Aim 1 we will decompose a wide range of NPDs and their subphenotypes into shared and unique
genetic components using a novel convex formulation of observed-weighted principal components
analysis (PCA) and develop extensions to handle sample overlap, linkage disequilibrium (LD), and
different ancestries. In Aim 2 we will extend and customize our existing work on causal network inference
using biconvex optimization to estimate both cis and trans gene regulatory networks in the brain using
large-scale uniformly processed chromatin accessibility and expression quantitative trait loci (QTLs). We
will regularize estimates of cis interactions using chromatin conformation data, model latent genetic
confounders in these networks using an expectation-maximization (EM) approach and estimate networks
over both genes and NPDs in order to determine the most direct causes (“core” genes in the omnigenic
model). In Aim 3 we will analyze both rare and common genetic associations in their gene regulatory
network context. Borrowing from cancer genomics, we will use heat diffusion models to propagate
statistical information on the local network over both genes and regulatory elements (REs) and then use
graph clustering algorithms to extract “hot” subnetworks, corresponding to pathways implicated in the
NPD under study. The methods we develop for these analyses will be made publicly available under
source licenses with extensive support in terms of documentation, tutorials, and vignettes. Through this
we hope to empower future “post-GWAS” analyses that can leverage the genetic, subphenotype and trait
networks underlying human neuropsychiatric health, and eventually point the way to therapeutic
interventions.
项目总结/摘要
在国际开放科学合作的推动下,
财团(PGC,其中co-I Mullins是一个领先的分析师)都是全基因组关联研究
(GWAS)和神经精神疾病(NPD)的全外显子组和基因组测序研究
样本量迅速增加。随着样本量的增加,
检测对疾病风险的更多、更小的遗传影响,称为多基因成分。的
现在的挑战是了解这些发现告诉我们关于NPD风险,病因和生物学的信息。这里我们
提出了一套多性状分析的方法,以确定潜在的潜在结构,因果关系,
基因和性状的网络,以及丰富的数据衍生的调控途径。我们广泛使用
凸优化方法,允许计算效率和保证再现性。
在目标1中,我们将广泛的NPD及其亚表型分解为共享和独特的
基于新的凸加权主成分的遗传成分
分析(PCA)和开发扩展来处理样本重叠,连锁不平衡(LD),
不同的祖先。在目标2中,我们将扩展和定制我们现有的因果网络推理工作
使用双凸优化来估计大脑中的顺式和反式基因调控网络,
大规模均匀加工的染色质可及性和表达数量性状位点(QTL)。我们
将使用染色质构象数据,模型潜在的遗传
使用期望最大化(EM)方法和估计网络
为了确定最直接的原因(全基因组中的“核心”基因),
模型)。在目标3中,我们将分析罕见和常见的遗传关联,在他们的基因调控中,
网络环境。借用癌症基因组学,我们将使用热扩散模型来传播
在基因和调控元件(RE)上的局部网络上的统计信息,然后使用
图聚类算法提取“热”子网络,对应的路径牵连在
正在研究NPD。我们为这些分析开发的方法将在
源代码许可证,在文档、教程和插图方面提供广泛的支持。通过这个
我们希望能够在未来的“后GWAS”分析中利用基因、亚表型和性状,
人类神经精神健康的基础网络,并最终指出了治疗方法
干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Arthur Knowles其他文献
David Arthur Knowles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Arthur Knowles', 18)}}的其他基金
Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
- 批准号:
10504516 - 财政年份:2022
- 资助金额:
$ 76.92万 - 项目类别:
A CRISPR/Cas13 approach for identifying individual transcript isoform function in cancer
用于识别癌症中个体转录亚型功能的 CRISPR/Cas13 方法
- 批准号:
10671680 - 财政年份:2022
- 资助金额:
$ 76.92万 - 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
- 批准号:
10471969 - 财政年份:2020
- 资助金额:
$ 76.92万 - 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
- 批准号:
10045386 - 财政年份:2020
- 资助金额:
$ 76.92万 - 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
- 批准号:
10406760 - 财政年份:2020
- 资助金额:
$ 76.92万 - 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
- 批准号:
10686319 - 财政年份:2020
- 资助金额:
$ 76.92万 - 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
- 批准号:
10247588 - 财政年份:2020
- 资助金额:
$ 76.92万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 76.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 76.92万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 76.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 76.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)