Summer school at the UW: Stochastic equations for complex systems: Theory and applications

华盛顿大学暑期学校:复杂系统的随机方程:理论与应用

基本信息

  • 批准号:
    1416689
  • 负责人:
  • 金额:
    $ 4.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-03-01 至 2015-02-28
  • 项目状态:
    已结题

项目摘要

This award supports participation in a summer school on complex random systems, to be held at the University of Wyoming, May 27--June 6, 2014. Understanding and ability to predict the behavior of complex random systems is critical, for example, to weather and climate predictions and to nanoscale technology. The summer school will focus on the ongoing development of theoretical methods and applications in these areas. The aim is to provide a stimulating intellectual environment for interactions among researchers with different backgrounds. The school is primarily oriented towards PhD students, young and experienced researchers and professionals working in related areas. This summer school is especially aimed at encouraging female students and early career researchers in mathematics. The interest and enthusiasm of these young students are the motivating factor in organizing this summer school. This school will further advance this development throughout the region, while training U.S. junior mathematicians and students for international collaborative research. The summer school materials will be widely distributed by the publication of a textbook. Taking stochastic effects into account is of central importance for the development of mathematical models of complex phenomena that affected by uncertainty. Macroscopic models for these systems can include randomness in several ways. The theories of random dynamical systems and stochastic differential equations provide fundamental ideas and tools for the modeling, analysis, and prediction of complex phenomena. The associated research, ranging from pure to applied, is extremely broad, with many active groups in the U.S. and abroad. The summer school will treat key topics related to the theory and application of stochastic differential equations, in particular, to turbulent flow simulations: Malliavin calculus, Monte Carlo methods, multiscale models, molecular dynamics, stochastic methods for turbulent flows, porous media, weather prediction, and uncertainty quantification. The summer school will serve as a venue for developing communication and establishing collaborative research among different research groups. Moreover, it will provide an educational component for graduate students and early career researchers. The award supports participation of six invited speakers and forty other participants.Summer school web site: www.uwyo.edu/math/colloquia/summer-school.html
该奖项支持参加于2014年5月27日至6月6日在怀俄明大学举办的复杂随机系统暑期学校。理解和预测复杂随机系统行为的能力是至关重要的,例如,对天气和气候预测以及纳米级技术。暑期学校将重点关注这些领域的理论方法和应用的持续发展。其目的是为不同背景的研究人员之间的互动提供一个刺激的智力环境。学校主要面向博士研究生,年轻和有经验的研究人员和在相关领域工作的专业人士。这个暑期学校特别旨在鼓励女性学生和早期数学研究人员。这些年轻学生的兴趣和热情是组织这次暑期学校的动力因素。这所学校将在整个地区进一步推动这一发展,同时为国际合作研究培训美国初级数学家和学生。暑期学校的教材将以出版教科书的方式广泛分发。考虑随机效应对于发展受不确定性影响的复杂现象的数学模型是至关重要的。这些系统的宏观模型可以以多种方式包含随机性。随机动力系统和随机微分方程的理论为复杂现象的建模、分析和预测提供了基本的思想和工具。相关的研究,从纯粹到应用,范围非常广泛,在美国和国外有许多活跃的团体。暑期学校将处理与随机微分方程的理论和应用相关的关键主题,特别是湍流模拟:马利亚文微积分,蒙特卡罗方法,多尺度模型,分子动力学,湍流的随机方法,多孔介质,天气预报和不确定性量化。暑期学校将成为不同研究小组之间发展交流和建立合作研究的场所。此外,它将为研究生和早期职业研究人员提供教育组成部分。该奖项支持6名受邀演讲者和40名其他参与者的参与。暑期学校网站:www.uwyo.edu/math/colloquia/summer-school.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hakima Bessaih其他文献

Strong $$L^2$$ convergence of time Euler schemes for stochastic 3D Brinkman–Forchheimer–Navier–Stokes equations
On the Rate of Convergence of the 2-D Stochastic Leray- $$\alpha $$ Model to the 2-D Stochastic Navier–Stokes Equations with Multiplicative Noise
  • DOI:
    10.1007/s00245-015-9303-7
  • 发表时间:
    2015-06-16
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Hakima Bessaih;Paul André Razafimandimby
  • 通讯作者:
    Paul André Razafimandimby
Rate of convergence of a semi-implicit time euler scheme for a 2D bénard–boussinesq model

Hakima Bessaih的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hakima Bessaih', 18)}}的其他基金

Inviscid Limits, Uniqueness, and Anomalous Dissipation in Hydrodynamics
流体动力学中的无粘极限、唯一性和反常耗散
  • 批准号:
    2108573
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Standard Grant
Inviscid Limits, Uniqueness, and Anomalous Dissipation in Hydrodynamics
流体动力学中的无粘极限、唯一性和反常耗散
  • 批准号:
    2147189
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining Forms and Data Assimilation with Stochastic Data
协作研究:利用随机数据确定形式和数据同化
  • 批准号:
    1418838
  • 财政年份:
    2014
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Standard Grant
The Second Internationla Conference on Random Dynamical Systems
第二届国际随机动力系统会议
  • 批准号:
    1053072
  • 财政年份:
    2011
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Standard Grant
Stochastic Analysis of Vortex Filaments
涡旋细丝的随机分析
  • 批准号:
    0608494
  • 财政年份:
    2006
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Standard Grant

相似海外基金

MRSEC: UW Molecular Engineering Materials Center
MRSEC:华盛顿大学分子工程材料中心
  • 批准号:
    2308979
  • 财政年份:
    2023
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Cooperative Agreement
UW-Milwaukee Promoting Equity, Diversity, and Academic Success Through Aging Research Program (UWM STAR)
威斯康星大学密尔沃基分校通过老龄化研究项目促进公平、多样性和学业成功 (UWM STAR)
  • 批准号:
    10626597
  • 财政年份:
    2023
  • 资助金额:
    $ 4.64万
  • 项目类别:
UW Practice-based Suicide Prevention Research Center
华盛顿大学基于实践的自杀预防研究中心
  • 批准号:
    10575206
  • 财政年份:
    2023
  • 资助金额:
    $ 4.64万
  • 项目类别:
REU Site in Astronomy and Astrophysics at UW-Madison: Forward into the 2020s (2022-2024)
威斯康辛大学麦迪逊分校天文学和天体物理学 REU 站点:迈向 2020 年代(2022-2024)
  • 批准号:
    2150222
  • 财政年份:
    2022
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Standard Grant
University of Washington Significant Opportunities in Addiction Research (UW-SOAR) Neuroscience Doctoral Readiness Program
华盛顿大学成瘾研究的重大机会(UW-SOAR)神经科学博士准备计划
  • 批准号:
    10706601
  • 财政年份:
    2022
  • 资助金额:
    $ 4.64万
  • 项目类别:
REU Site: Advancing high-performance computing opportunities in undergraduate research at UW-Eau Claire to meet challenges of multidisciplinary computational science
REU 网站:在威斯康星大学欧克莱尔分校本科生研究中推进高性能计算机会,应对多学科计算科学的挑战
  • 批准号:
    2150191
  • 财政年份:
    2022
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Standard Grant
University of Washington Significant Opportunities in Addiction Research (UW-SOAR) Neuroscience Doctoral Readiness Program
华盛顿大学成瘾研究的重大机会(UW-SOAR)神经科学博士准备计划
  • 批准号:
    10610060
  • 财政年份:
    2022
  • 资助金额:
    $ 4.64万
  • 项目类别:
University of Washington (UW) Mendelian Genomics Data Coordinating Center
华盛顿大学 (UW) 孟德尔基因组数据协调中心
  • 批准号:
    10415150
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
University of Washington Mendelian Genomics Research Center (UW-MGRC)
华盛顿大学孟德尔基因组学研究中心 (UW-MGRC)
  • 批准号:
    10215884
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
Underwater coded aperture miniature mass spectrometer (UW-CAMMS)
水下编码孔径微型质谱仪 (UW-CAMMS)
  • 批准号:
    2123556
  • 财政年份:
    2021
  • 资助金额:
    $ 4.64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了