Inviscid Limits, Uniqueness, and Anomalous Dissipation in Hydrodynamics
流体动力学中的无粘极限、唯一性和反常耗散
基本信息
- 批准号:2108573
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Turbulence, the complex, irregular and chaotic motion of fluids, is a ubiquitous and fundamental mechanism for the transfer of momentum and energy across spatio-temporal scales. Although the deterministic equations describing the dynamics of fluids are well-established and their numerical solution has revealed much about the turbulent behavior of fluids, their analysis is challenging, and basic results remain elusive. The use of probabilistic tools offer complementary approaches that naturally incorporate the uncertainties of the actual state of the fluid and random perturbations due to external forces. This project will leverage state-of-the-art tools in probability, stochastic analysis, and dynamical systems, to study the basic fluid dynamics models and some of its variants, which are relevant to physics, engineering, and atmosphere-ocean dynamics. Emphasis will be given to study the effect of random forcing on these systems, gain further understanding on the energy transfer across scales, and the possibility of obtaining basic existence and uniqueness results using the probabilistic framework, which remain elusive in the deterministic approach. The project will also provide opportunities for undergraduate and graduate students to participate in the research. This research program studies several mathematical problems stemming from the challenges of turbulence theory and involves stochastic analysis, dynamical systems, and partial differential equations. The goal is to understand the link between the Euler and Navier-Stokes equations, their stochastic versions, and the phenomenological laws of turbulence. The advantage of the stochastic approach is the major simplicity of balance laws between mean rates of energy injection, dissipation, and flux. Due to the rich structure of these stochastic models, some results on uniqueness and stability of some approximations of three-dimensional viscous and inviscid fluid flows could be proved while their deterministic counterpart is lacking. The smoothing effect of the noise on the associated dynamical system will be used. The study of the inviscid limit problem will be tackled for a better understanding of the direct energy cascade for the three-dimensional case and the inverse energy cascade for the two-dimensional case. Some inviscid limits for some geophysical models with anisotropic viscosity will be investigated as well. Theoretical issues, such as existence, uniqueness, and ergodicity of invariant measures, will be complemented by numerical simulations. This project is jointly funded by the Division of Mathematical Sciences Applied Mathematics program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流是流体的复杂,不规则和混乱的运动,是一种无处不在的基本机制,用于转移跨时空尺度的动量和能量。尽管描述流体动力学的确定性方程是完善的,并且其数值解决方案已经揭示了流体的湍流行为,但它们的分析具有挑战性,并且基本结果仍然难以捉摸。概率工具的使用提供了互补的方法,这些方法自然地包含了由于外力而导致的流体状态和随机扰动的不确定性。该项目将在概率,随机分析和动态系统方面利用最新工具,以研究与物理,工程和大气 - 海洋动力学相关的基本流体动力学模型及其某些变体。将重点是研究随机强迫对这些系统的影响,进一步了解跨量表的能量转移,并使用概率框架获得基本的存在和独特性结果,而这些概率框架在确定性方法中仍然难以捉摸。该项目还将为大学生和研究生提供参与研究的机会。该研究计划研究了源自湍流理论的挑战,涉及随机分析,动力学系统和部分微分方程。目的是了解Euler和Navier-Stokes方程,其随机版本以及湍流的现象学定律之间的联系。随机方法的优点是平均能量注入,耗散和通量之间平衡定律的主要简单性。由于这些随机模型的丰富结构,可以证明,在缺乏确定性的对应物的同时,可以证明一些关于三维粘性和无粘性流体流的近似值的结果。噪声对相关动力学系统的平滑效果将被使用。将解决对Inviscid限制问题的研究,以更好地了解三维情况的直接能量级联和二维情况的逆向能量级联。对于某些具有各向异性粘度的地球物理模型的一定限制也将被研究。理论问题(例如不变措施的存在,独特性和奇迹性)将通过数值模拟进行补充。该项目由数学科学司应用数学计划和启发竞争性研究的既定计划共同资助(EPSCOR)。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hakima Bessaih其他文献
Hakima Bessaih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hakima Bessaih', 18)}}的其他基金
Inviscid Limits, Uniqueness, and Anomalous Dissipation in Hydrodynamics
流体动力学中的无粘极限、唯一性和反常耗散
- 批准号:
2147189 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Summer school at the UW: Stochastic equations for complex systems: Theory and applications
华盛顿大学暑期学校:复杂系统的随机方程:理论与应用
- 批准号:
1416689 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: Determining Forms and Data Assimilation with Stochastic Data
协作研究:利用随机数据确定形式和数据同化
- 批准号:
1418838 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
The Second Internationla Conference on Random Dynamical Systems
第二届国际随机动力系统会议
- 批准号:
1053072 - 财政年份:2011
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Stochastic Analysis of Vortex Filaments
涡旋细丝的随机分析
- 批准号:
0608494 - 财政年份:2006
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
相似国自然基金
随机乘积和带状矩阵最大特征值的极限分布
- 批准号:12371157
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
多项式扰动系统的极限环分支与符号计算
- 批准号:12371175
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
微重力低拉伸率扩散火焰近极限燃烧特性与熄灭行为研究
- 批准号:52306172
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新息在稳定分布吸引域的长记忆线性过程泛函极限理论研究及其应用
- 批准号:12371156
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于量子Cramer-Rao极限的非厄米及开放系统量子感知研究
- 批准号:12305031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant