Inviscid Limits, Uniqueness, and Anomalous Dissipation in Hydrodynamics
流体动力学中的无粘极限、唯一性和反常耗散
基本信息
- 批准号:2147189
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Turbulence, the complex, irregular and chaotic motion of fluids, is a ubiquitous and fundamental mechanism for the transfer of momentum and energy across spatio-temporal scales. Although the deterministic equations describing the dynamics of fluids are well-established and their numerical solution has revealed much about the turbulent behavior of fluids, their analysis is challenging, and basic results remain elusive. The use of probabilistic tools offer complementary approaches that naturally incorporate the uncertainties of the actual state of the fluid and random perturbations due to external forces. This project will leverage state-of-the-art tools in probability, stochastic analysis, and dynamical systems, to study the basic fluid dynamics models and some of its variants, which are relevant to physics, engineering, and atmosphere-ocean dynamics. Emphasis will be given to study the effect of random forcing on these systems, gain further understanding on the energy transfer across scales, and the possibility of obtaining basic existence and uniqueness results using the probabilistic framework, which remain elusive in the deterministic approach. The project will also provide opportunities for undergraduate and graduate students to participate in the research. This research program studies several mathematical problems stemming from the challenges of turbulence theory and involves stochastic analysis, dynamical systems, and partial differential equations. The goal is to understand the link between the Euler and Navier-Stokes equations, their stochastic versions, and the phenomenological laws of turbulence. The advantage of the stochastic approach is the major simplicity of balance laws between mean rates of energy injection, dissipation, and flux. Due to the rich structure of these stochastic models, some results on uniqueness and stability of some approximations of three-dimensional viscous and inviscid fluid flows could be proved while their deterministic counterpart is lacking. The smoothing effect of the noise on the associated dynamical system will be used. The study of the inviscid limit problem will be tackled for a better understanding of the direct energy cascade for the three-dimensional case and the inverse energy cascade for the two-dimensional case. Some inviscid limits for some geophysical models with anisotropic viscosity will be investigated as well. Theoretical issues, such as existence, uniqueness, and ergodicity of invariant measures, will be complemented by numerical simulations. This project is jointly funded by the Division of Mathematical Sciences Applied Mathematics program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流是一种复杂的、不规则的、混沌的流体运动,是一种普遍存在的、跨越时空尺度的动量和能量转移的基本机制。尽管描述流体动力学的确定性方程已经建立,并且它们的数值解已经揭示了许多关于流体湍流行为的信息,但它们的分析仍然具有挑战性,基本结果仍然难以捉摸。概率工具的使用提供了补充方法,自然地将流体实际状态的不确定性和外力引起的随机扰动结合起来。该项目将利用概率、随机分析和动力系统方面最先进的工具,研究与物理、工程和大气-海洋动力学相关的基本流体动力学模型及其一些变体。重点将放在研究随机强迫对这些系统的影响,进一步了解跨尺度的能量传递,以及利用概率框架获得基本存在性和唯一性结果的可能性,这在确定性方法中仍然难以捉摸。该项目还将为本科生和研究生提供参与研究的机会。本研究计划研究源自湍流理论挑战的几个数学问题,涉及随机分析、动力系统和偏微分方程。目标是理解欧拉方程和纳维-斯托克斯方程之间的联系,它们的随机版本,以及湍流的现象学定律。随机方法的优点主要是能量注入、耗散和通量的平均速率之间的平衡律的简单性。由于这些随机模型的丰富结构,一些三维粘性和无粘性流体流动的近似可以证明唯一性和稳定性的结果,而缺乏确定性的对应结果。将使用噪声对相关动力系统的平滑效应。为了更好地理解三维情况下的正能量级联和二维情况下的逆能量级联,我们将研究无粘极限问题。对一些具有各向异性黏度的地球物理模型的非黏性极限也进行了研究。理论问题,如不变量测度的存在性、唯一性和遍历性,将通过数值模拟得到补充。该项目由数学科学部应用数学项目和促进竞争研究的既定项目(EPSCoR)共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Speed of Convergence of Time Euler Schemes for a Stochastic 2D Boussinesq Model
- DOI:10.3390/math10224246
- 发表时间:2022-10
- 期刊:
- 影响因子:2.4
- 作者:H. Bessaih;A. Millet
- 通讯作者:H. Bessaih;A. Millet
Stochastic elliptic–parabolic system arising in porous media
多孔介质中出现的随机椭圆抛物线系统
- DOI:10.1142/s0219493722400226
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Bessaih, Hakima;Cohn, Cynthia;Landoulsi, Oussama
- 通讯作者:Landoulsi, Oussama
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hakima Bessaih其他文献
Strong $$L^2$$ convergence of time Euler schemes for stochastic 3D Brinkman–Forchheimer–Navier–Stokes equations
- DOI:
10.1007/s40072-022-00255-9 - 发表时间:
2022-05-10 - 期刊:
- 影响因子:1.400
- 作者:
Hakima Bessaih;Annie Millet - 通讯作者:
Annie Millet
On the Rate of Convergence of the 2-D Stochastic Leray- $$\alpha $$ Model to the 2-D Stochastic Navier–Stokes Equations with Multiplicative Noise
- DOI:
10.1007/s00245-015-9303-7 - 发表时间:
2015-06-16 - 期刊:
- 影响因子:1.700
- 作者:
Hakima Bessaih;Paul André Razafimandimby - 通讯作者:
Paul André Razafimandimby
Rate of convergence of a semi-implicit time euler scheme for a 2D bénard–boussinesq model
- DOI:
10.1007/s40072-024-00347-8 - 发表时间:
2025-01-31 - 期刊:
- 影响因子:1.400
- 作者:
Hakima Bessaih;Annie Millet - 通讯作者:
Annie Millet
Hakima Bessaih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hakima Bessaih', 18)}}的其他基金
Inviscid Limits, Uniqueness, and Anomalous Dissipation in Hydrodynamics
流体动力学中的无粘极限、唯一性和反常耗散
- 批准号:
2108573 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Summer school at the UW: Stochastic equations for complex systems: Theory and applications
华盛顿大学暑期学校:复杂系统的随机方程:理论与应用
- 批准号:
1416689 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Collaborative Research: Determining Forms and Data Assimilation with Stochastic Data
协作研究:利用随机数据确定形式和数据同化
- 批准号:
1418838 - 财政年份:2014
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
The Second Internationla Conference on Random Dynamical Systems
第二届国际随机动力系统会议
- 批准号:
1053072 - 财政年份:2011
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Stochastic Analysis of Vortex Filaments
涡旋细丝的随机分析
- 批准号:
0608494 - 财政年份:2006
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
相似海外基金
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Pushing the limits of electronic delocalization in organic molecules
突破有机分子电子离域的极限
- 批准号:
DE240100664 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Learning from Data on Structured Complexes: Products, Bundles, and Limits
职业:从结构化复合体的数据中学习:乘积、捆绑和限制
- 批准号:
2340481 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pushing the Limits of High-Field Solid-State NMR Technology: Enhancing Applications to Advanced Materials, the Life Sciences and Pharmaceuticals
突破高场固态核磁共振技术的极限:增强先进材料、生命科学和制药的应用
- 批准号:
EP/Z532836/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Asymptotic patterns and singular limits in nonlinear evolution problems
非线性演化问题中的渐近模式和奇异极限
- 批准号:
EP/Z000394/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant