Harnessing Scalable Libraries for Statistical Computing on Modern Architectures and Bringing Statistics to Large Scale Computing
利用可扩展库进行现代架构上的统计计算并将统计引入大规模计算
基本信息
- 批准号:1418195
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to increase participation in high performance computing (HPC) on medium- to large-scale platforms by the statistics community. Theoretical statisticians potentially have strong contributions to science where big data and HPC are involved, yet in implementation on large platforms they face low-level programming languages, libraries, and runtime environments that pose a high enough barrier to prevent most from entering. This project is centered on enabling exactly this community to experiment at a large scale by bridging most of the barriers while using state-of-the-art approaches from the HPC community. Broader impacts of this research include opening a new avenue for HPC scalable software reuse by the statistics and the data science communities, thus providing additional and more data-oriented feedback to HPC software research. Further, an HPC-engaged statistics community can bring statistical science to modern issues in supercomputing that are increasingly in need of statistical thinking for quantifying uncertainty.The open source R programming language and environment for statistical computing is an ideal vehicle for the project as it currently dominates new work in statistics and it is widely used and rising in popularity in many other data-enabled science communities. This project will connect the R language to highly scalable HPC libraries at interfaces that make long-term sense and in a way that in most cases requires no change from current programming practice. In addition, ease-of-use components will be developed inside R for intuitive use of these libraries for big data input and data manipulation on large computing platforms and to bridge HPC runtime environments. Outreach consisting of documentation, examples, a schedule of tutorials at a number of key conferences, and workshops will be used to bring the results of this project to the statistics and other data-enabled science communities.
该项目旨在增加统计界对中型到大型平台上的高性能计算(HPC)的参与。理论统计学家可能对涉及大数据和 HPC 的科学做出巨大贡献,但在大型平台上实施时,他们面临低级编程语言、库和运行时环境,这些障碍构成了足够高的障碍,阻止大多数人进入。该项目的重点是通过使用 HPC 社区最先进的方法来消除大多数障碍,从而使该社区能够进行大规模实验。这项研究的更广泛影响包括为统计和数据科学界的 HPC 可扩展软件重用开辟一条新途径,从而为 HPC 软件研究提供更多、更多面向数据的反馈。此外,参与 HPC 的统计社区可以将统计科学带入超级计算中的现代问题,这些问题越来越需要统计思维来量化不确定性。用于统计计算的开源 R 编程语言和环境是该项目的理想工具,因为它目前在统计领域的新工作中占据主导地位,并且在许多其他数据支持的科学社区中得到广泛使用并越来越受欢迎。该项目将通过具有长期意义的接口将 R 语言连接到高度可扩展的 HPC 库,并且在大多数情况下不需要改变当前的编程实践。此外,将在 R 内部开发易于使用的组件,以便直观地使用这些库在大型计算平台上进行大数据输入和数据操作,并桥接 HPC 运行时环境。包括文档、示例、一些重要会议的教程时间表和研讨会在内的外展活动将用于将该项目的结果带给统计学和其他数据支持的科学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Ostrouchov其他文献
George Ostrouchov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
- 批准号:
MR/Y011686/1 - 财政年份:2025
- 资助金额:
$ 60万 - 项目类别:
Fellowship
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Studentship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
- 批准号:
2319913 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
- 批准号:
2340453 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
- 批准号:
2335583 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: Building a Scalable and Polymorphic Cyberinfrastructure for Diverse Research and Education Needs at Illinois State University
CC* 网络基础设施:为伊利诺伊州立大学的多样化研究和教育需求构建可扩展和多态的网络基础设施
- 批准号:
2346712 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant