A Practical Approach to Rothe's Method: Method of Lines Transpose
罗特方法的实用方法:直线转置法
基本信息
- 批准号:1418804
- 负责人:
- 金额:$ 20.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many important equations in Physics, Chemistry and Materials Science exhibit a range of critical time scales. Generally, behaviors break up into a range of fast, medium, and slow time scales. Take for example the process of casting a polymer membrane that undergoes phase separation during the casting process. Polymers of this type include fuel cell membranes, separators in modern batteries, and polymer based solar cells. The fastest time scale is the spinodal region (an initial coursing process during casting) which might be pico to micro seconds. Then comes a longer transient phase, which is on the order of tens of minutes to hours. This transient is when the system settles down and the membrane starts to take its final form. The overall casting process can take days to complete, dictating how well the membrane will work. The state of the art for modeling these processes is to use direct simulation of casting by modeling the individual atoms in the system using molecular dynamics. However, even on the biggest super computers, the best methods can only simulate hundreds of pico seconds. To obtain accurate models of these systems over these time scales, a new class of models, functionalized Cahn Hilliard, was proposed. However, this type of model is very challenging to solve, requiring both temporal and spatial accuracy over a wide range of scales. To accommodate this model, we are developing a new class of numerical methods which take advantage of the multi-core computing revolution. If successful, this new class of numerical methods will facilitate rapid simulations of problems we could only experimentally interrogate in the past. The overall goal in developing this new class of numerical methods for challenging models of this nature is to move the process of design away from an Edisonian approach to one of thoughtful design process. With reliable numerical tools, the process of design can be greatly enhanced. A key example of this is the materials and wing design of the new Boeing 777 aircraft, which was designed primarily through computer simulation.This proposal centers on the development of O(N), semi-analytic, high order, implicit solvers based on the method of lines transpose, otherwise known as Rothe's method, for a large class of PDEs. The methods are motivated by the PIs work on developing an A-Stable to all orders in time implicit method for acoustic problems with a variable wave speed. The method starts by discretizing the PDE in time, then solving the resulting non-oscillatory Helmholtz equation using a fast summation methodology, i.e., we use the free space Green's function to invert the operators followed by applying a boundary integral to correct the free space solution. To generate high order solutions, a new approach based on successive convolution is introduced. The proposal centers on the extension of the core algorithm, based on successive convolution, to a wide class of linear and non-linear PDEs. A novel method for multi-level domain decomposition (DD) is presented. The DD method offers a possible path for developing scalable versions of the algorithm for distributed multi-core platforms.
在物理、化学和材料科学中,许多重要的方程都具有一定的临界时间尺度。一般来说,行为分为快、中、慢三个时间尺度。例如,在浇注过程中经历相分离的聚合物膜的浇注过程。这种类型的聚合物包括燃料电池膜、现代电池中的分离器和基于聚合物的太阳能电池。最快的时间尺度是旋转区域(铸造过程中的初始过程),可能是皮秒到微秒。然后是一个更长的瞬态阶段,大约几十分钟到几个小时。这个短暂的过程是当系统稳定下来,膜开始形成它的最终形态。整个铸造过程可能需要几天才能完成,这决定了膜的工作效果。对这些过程进行建模的最新技术是通过使用分子动力学对系统中的单个原子进行建模来直接模拟铸造。然而,即使在最大的超级计算机上,最好的方法也只能模拟几百皮秒。为了在这些时间尺度上获得这些系统的精确模型,提出了一类新的模型,即功能化的Cahn Hilliard模型。然而,这种类型的模型非常具有挑战性,需要在大范围内的时间和空间精度。为了适应这个模型,我们正在开发一种利用多核计算革命的新型数值方法。如果成功,这类新的数值方法将有助于快速模拟我们过去只能通过实验来询问的问题。开发这类新的数值方法来挑战这种性质的模型的总体目标是将设计过程从爱迪生方法转移到一个深思熟虑的设计过程。有了可靠的数值工具,设计过程可以大大提高。这方面的一个关键例子是新型波音777飞机的材料和机翼设计,它主要是通过计算机模拟设计的。本提案的中心是基于线转置方法的O(N),半解析,高阶,隐式求解器,也称为Rothe方法,用于一类大的偏微分方程。这些方法的灵感来自于pi对变波速声学问题的时间隐式a -稳定全阶方法的研究。该方法首先在时间上离散PDE,然后使用快速求和方法求解得到的非振荡Helmholtz方程,即,我们使用自由空间格林函数来反演算子,然后应用边界积分来修正自由空间解。为了生成高阶解,提出了一种基于连续卷积的新方法。该方案的中心是将基于连续卷积的核心算法扩展到广泛的线性和非线性偏微分方程。提出了一种新的多级域分解方法。DD方法为为分布式多核平台开发算法的可伸缩版本提供了可能的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Christlieb其他文献
A semi-Lagrangian adaptive-rank (SLAR) method for linear advection and nonlinear Vlasov-Poisson system
一种用于线性平流和非线性弗拉索夫 - 泊松系统的半拉格朗日自适应秩(SLAR)方法
- DOI:
10.1016/j.jcp.2025.113970 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:3.800
- 作者:
Nanyi Zheng;Daniel Hayes;Andrew Christlieb;Jing-Mei Qiu - 通讯作者:
Jing-Mei Qiu
Andrew Christlieb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Christlieb', 18)}}的其他基金
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
- 批准号:
2123260 - 财政年份:2021
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
A Data-driven Approach to Multiscale Methods for ScalableTransport in Neutron Star Mergers and Complex Plasmas
中子星合并和复杂等离子体中可扩展传输的数据驱动多尺度方法
- 批准号:
2008004 - 财政年份:2020
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Implicit Multi-Scale Plasma Simulations Using Low Cost Matrix-Free Methods for Partial Differential Equations
使用低成本无矩阵方法进行偏微分方程的隐式多尺度等离子体模拟
- 批准号:
1912183 - 财政年份:2019
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Temporal Multi-Scale Simulation Tools Kinetic Plasma Equations
时态多尺度模拟工具动力学等离子体方程
- 批准号:
1115709 - 财政年份:2011
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Systematic Lagrangian Methods for Transport Problems
传输问题的系统拉格朗日方法
- 批准号:
0811175 - 财政年份:2008
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
- 批准号:
EP/Z000246/1 - 财政年份:2025
- 资助金额:
$ 20.5万 - 项目类别:
Research Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
- 批准号:
2305462 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Fellowship Award
「生きづらさ」を抱える妊産婦に対するnon-stigmatizing approachの開発
为正在经历“生活困难”的孕妇制定一种非侮辱性的方法
- 批准号:
24K14025 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
- 批准号:
24K20789 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
- 批准号:
24K20168 - 财政年份:2024
- 资助金额:
$ 20.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists