A Data-driven Approach to Multiscale Methods for ScalableTransport in Neutron Star Mergers and Complex Plasmas
中子星合并和复杂等离子体中可扩展传输的数据驱动多尺度方法
基本信息
- 批准号:2008004
- 负责人:
- 金额:$ 43.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The detection of multimessenger astrophysical signals is one of the most exciting and significant new areas in physics. However, extracting meaningful physical understanding from observations depends fundamentally on accurately modeling and simulating such complex multiphysics, multiscale systems. For example, neutrinos play a key role in neutron star mergers, but the extreme complexity and scale of this class of problem force the use of severe, and often inadequate, approximations. This project directly addresses these deficiencies with a novel approach, which will be open-source and incorporated into the widely-used FLASH radiation hydrodynamics code, thus benefiting the broader computational astrophysics community. The research includes significant mentoring of graduate students and postdoctoral researchers, who will develop skills that are in high demand.The work will advance the state-of-the-art in modeling neutrino transport in high-accuracy simulations of binary neutron star mergers and core-collapse supernovae, developing surrogate models for the kinetic equations by using machine learning (ML) and reduced order modeling (ROM), to achieve scalable multi-scale transport simulations. The framework, dubbed Surrogate Transport Adaptive Model Procedure (STAMP), replaces algebraic closure with adaptive computed methods from a surrogate model, and retains the highly-scalable nature of moment methods while recovering the accuracy of multi-angle approaches. This project advances the goals of the NSF Windows on the Universe Big Idea.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多信使天体物理信号的探测是物理学中最令人兴奋和重要的新领域之一。然而,从观测中提取有意义的物理理解从根本上取决于准确地建模和模拟这种复杂的多物理场、多尺度系统。例如,中微子在中子星合并中起着关键作用,但这类问题的极端复杂性和规模迫使我们使用严格的、往往不充分的近似。这个项目用一种新颖的方法直接解决了这些缺陷,该方法将是开源的,并被纳入广泛使用的FLASH辐射流体动力学代码中,从而使更广泛的计算天体物理学社区受益。这项研究包括对研究生和博士后研究人员的重要指导,他们将培养出高需求的技能。这项工作将在双中子星合并和核心坍缩超新星的高精度模拟中推进最先进的中微子输运建模,通过使用机器学习(ML)和降阶建模(ROM)开发动力学方程的替代模型,以实现可扩展的多尺度输运模拟。该框架被称为代理传输自适应模型过程(STAMP),它用代理模型中的自适应计算方法取代了代数闭包,并在恢复多角度方法精度的同时保留了矩方法的高度可扩展性。这个项目推进了NSF宇宙大构想窗口的目标。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine learning moment closure models for the radiative transfer equation II: enforcing global hyperbolicity in gradient based closures
- DOI:10.1137/21m1423956
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Juntao Huang;Yingda Cheng;A. Christlieb;L. Roberts;W. Yong
- 通讯作者:Juntao Huang;Yingda Cheng;A. Christlieb;L. Roberts;W. Yong
Machine learning moment closure models for the radiative transfer equation I: directly learning a gradient based closure
- DOI:10.1016/j.jcp.2022.110941
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Juntao Huang;Yingda Cheng;A. Christlieb;L. Roberts
- 通讯作者:Juntao Huang;Yingda Cheng;A. Christlieb;L. Roberts
Machine Learning Moment Closure Models for the Radiative Transfer Equation III: Enforcing Hyperbolicity and Physical Characteristic Speeds
- DOI:10.1007/s10915-022-02056-7
- 发表时间:2021-09
- 期刊:
- 影响因子:2.5
- 作者:Juntao Huang;Yingda Cheng;A. Christlieb;L. Roberts
- 通讯作者:Juntao Huang;Yingda Cheng;A. Christlieb;L. Roberts
A Reduced Basis Method for Radiative Transfer Equation
- DOI:10.1007/s10915-022-01782-2
- 发表时间:2021-03
- 期刊:
- 影响因子:2.5
- 作者:Zhichao Peng;Yanlai Chen;Yingda Cheng;Fengyan Li
- 通讯作者:Zhichao Peng;Yanlai Chen;Yingda Cheng;Fengyan Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Christlieb其他文献
A semi-Lagrangian adaptive-rank (SLAR) method for linear advection and nonlinear Vlasov-Poisson system
一种用于线性平流和非线性弗拉索夫 - 泊松系统的半拉格朗日自适应秩(SLAR)方法
- DOI:
10.1016/j.jcp.2025.113970 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:3.800
- 作者:
Nanyi Zheng;Daniel Hayes;Andrew Christlieb;Jing-Mei Qiu - 通讯作者:
Jing-Mei Qiu
Andrew Christlieb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Christlieb', 18)}}的其他基金
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
- 批准号:
2123260 - 财政年份:2021
- 资助金额:
$ 43.34万 - 项目类别:
Continuing Grant
Implicit Multi-Scale Plasma Simulations Using Low Cost Matrix-Free Methods for Partial Differential Equations
使用低成本无矩阵方法进行偏微分方程的隐式多尺度等离子体模拟
- 批准号:
1912183 - 财政年份:2019
- 资助金额:
$ 43.34万 - 项目类别:
Standard Grant
A Practical Approach to Rothe's Method: Method of Lines Transpose
罗特方法的实用方法:直线转置法
- 批准号:
1418804 - 财政年份:2014
- 资助金额:
$ 43.34万 - 项目类别:
Continuing Grant
Temporal Multi-Scale Simulation Tools Kinetic Plasma Equations
时态多尺度模拟工具动力学等离子体方程
- 批准号:
1115709 - 财政年份:2011
- 资助金额:
$ 43.34万 - 项目类别:
Standard Grant
Systematic Lagrangian Methods for Transport Problems
传输问题的系统拉格朗日方法
- 批准号:
0811175 - 财政年份:2008
- 资助金额:
$ 43.34万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23K25946 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new data-driven approach to bring humanity into virtual worlds with computer vision
一种新的数据驱动方法,通过计算机视觉将人类带入虚拟世界
- 批准号:
23K28129 - 财政年份:2024
- 资助金额:
$ 43.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23H01250 - 财政年份:2023
- 资助金额:
$ 43.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
- 批准号:
2896325 - 财政年份:2023
- 资助金额:
$ 43.34万 - 项目类别:
Studentship
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 43.34万 - 项目类别:
Continuing Grant
Study on Heavy Rainfall Mechanism by Mathematical and Data-Driven Approach Using Large Ensemble
利用大集合的数学和数据驱动方法研究强降雨机制
- 批准号:
23KF0161 - 财政年份:2023
- 资助金额:
$ 43.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Enabling the mortgage industry to drive net zero retrofitting through a data-driven portfolio approach
使抵押贷款行业能够通过数据驱动的投资组合方法推动净零改造
- 批准号:
10092176 - 财政年份:2023
- 资助金额:
$ 43.34万 - 项目类别:
Collaborative R&D
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
- 批准号:
10619319 - 财政年份:2023
- 资助金额:
$ 43.34万 - 项目类别:
Data-driven approach for advanced control of immune system by using low-temperature plasma
利用低温等离子体对免疫系统进行高级控制的数据驱动方法
- 批准号:
23H01404 - 财政年份:2023
- 资助金额:
$ 43.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: A Holistic Developer-Centered Approach to Enhance Privacy for Data-Driven Applications
职业:以开发人员为中心的整体方法来增强数据驱动应用程序的隐私
- 批准号:
2238047 - 财政年份:2023
- 资助金额:
$ 43.34万 - 项目类别:
Continuing Grant