Upscaling and multilevel methods for three dimensional elasticity via element agglomeration
通过元素聚集实现三维弹性的升级和多级方法
基本信息
- 批准号:1418843
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on the integration of recent theoretical and algorithmic advances in numerical models, which describe the behavior of elastic materials on multiple scales, exhibiting stochastic behavior. The project will include algorithmic design, convergence and complexity analysis, as well as issues that arise in the performance of the upscaling and multilevel algorithms in realistic simulations. The proposed research: (1) aids the development of new and robust methods for upscaling that provide reliable calculations and predictions in structural mechanics; (2) supports the migration of such methods into real-life scientific and engineering simulations; and (3) engages the broader scientific community through research and educational activities, highlighting the integrated approach in numerical modeling of elastic materials from adaptive discretizations to robust solvers and back.The proposed research aims to improve understanding of the interplay between the techniques from differential geometry and topology, which lead to discretizations compatible with the geometric and topological structures inherited from the physical/mathematical model. Based on this, the PIs plan to develop agglomeration methods that offer provable optimal algorithm performance. The novel efficient and accurate upscaling techniques for elasticity problems have potential applications in material sciences and geosciences. In addition, accurate coarse discretizations yield efficient multilevel solvers for the linear systems coming from corresponding discretizations of linear elasticity. Such solvers enable simulations with finer spatial resolution and/or reduce the necessary computational resources for such simulations. Finally, the design of upscaling techniques has many similarities with the design of discretizations in general. The success of the project will facilitate accurate discretization schemes and robust solvers for linear elasticity equations based on element agglomeration.
该项目侧重于数值模型中最新理论和算法进展的整合,该模型描述了弹性材料在多个尺度上的行为,表现出随机行为。该项目将包括算法设计、收敛和复杂性分析,以及现实模拟中升级和多级算法性能中出现的问题。拟议的研究:(1)帮助开发新的、稳健的升级方法,为结构力学提供可靠的计算和预测; (2) 支持将此类方法迁移到现实生活中的科学和工程模拟中; (3) 通过研究和教育活动吸引更广泛的科学界,强调弹性材料数值建模中从自适应离散化到鲁棒求解器和反向的综合方法。拟议的研究旨在提高对微分几何和拓扑技术之间相互作用的理解,从而导致与从物理/数学模型继承的几何和拓扑结构兼容的离散化。在此基础上,PI 计划开发可提供可证明的最佳算法性能的聚合方法。 针对弹性问题的新型高效、准确的放大技术在材料科学和地球科学中具有潜在的应用。此外,精确的粗离散化可以为来自相应线性弹性离散化的线性系统产生有效的多级求解器。此类解算器能够以更精细的空间分辨率进行模拟和/或减少此类模拟所需的计算资源。 最后,升级技术的设计与一般离散化的设计有许多相似之处。该项目的成功将促进基于单元聚集的线性弹性方程的精确离散化方案和稳健的求解器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ludmil Zikatanov其他文献
A local Fourier analysis for additive Schwarz smoothers
- DOI:
10.1016/j.camwa.2023.12.039 - 发表时间:
2024-03-15 - 期刊:
- 影响因子:
- 作者:
Álvaro Pé de la Riva;Carmen Rodrigo;Francisco J. Gaspar;James H. Adler;Xiaozhe Hu;Ludmil Zikatanov - 通讯作者:
Ludmil Zikatanov
A two-level method for mimetic finite difference discretizations of elliptic problems
- DOI:
10.1016/j.camwa.2015.06.010 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:
- 作者:
Paola F. Antonietti;Marco Verani;Ludmil Zikatanov - 通讯作者:
Ludmil Zikatanov
Ludmil Zikatanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ludmil Zikatanov', 18)}}的其他基金
Collaborative Research: Adaptive Mixed-Dimensional Modeling and Simulation of Porous Media
协作研究:多孔介质的自适应混合维建模与仿真
- 批准号:
2208249 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
合作提案:神经网络数值建模、学习和多级有限元方法研讨会
- 批准号:
2132710 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Multilevel Methods for Numerical Modeling with Applications in Hydrogeology
多级数值模拟方法及其在水文地质学中的应用
- 批准号:
1720114 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Algebraic Multigrid Methods: Multilevel Theory and Practice
合作研究:代数多重网格方法:多层次理论与实践
- 批准号:
0810982 - 财政年份:2008
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Algebraic Multigrid Methods and Their Application to Generalized Finite Element Methods
代数多重网格方法及其在广义有限元方法中的应用
- 批准号:
0511800 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
悬浮电容非对称变换器及其非平衡电压控制研究
- 批准号:51007056
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Opioid Use and Acute Suicide Risk: The Real-Time Influence of Trauma Context"
阿片类药物的使用和急性自杀风险:创伤背景的实时影响”
- 批准号:
10674342 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Multidimensional structural racism and moderating role of psychosocial resources on cancer-control behaviors in African Americans
多维结构性种族主义和心理社会资源对非裔美国人癌症控制行为的调节作用
- 批准号:
10798610 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
A Multilevel, Multiphase Optimization Strategy for PrEP: Patients and Providers in Primary Care
PrEP 的多层次、多阶段优化策略:初级保健中的患者和提供者
- 批准号:
10818740 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
A place-based approach to geographic disparities in lung transplant
基于地点的肺移植地理差异方法
- 批准号:
10655779 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Neighborhood Social Environment, Composition and Depression in Latinx
拉丁裔邻里社会环境、构成和抑郁
- 批准号:
10607878 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Substance use treatment and county incarceration: Reducing inequities in substance use treatment need, availability, use, and outcomes
药物滥用治疗和县监禁:减少药物滥用治疗需求、可用性、使用和结果方面的不平等
- 批准号:
10585508 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Addressing racial/ethnic geographic disparities in COVID-19 health services and outcomes among nursing home residents with ADRD
解决患有 ADRD 的疗养院居民在 COVID-19 卫生服务和结果方面的种族/民族地理差异
- 批准号:
10679243 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Trends in Associations between Maternal Methamphetamine Use and Congenital Syphilis in Los Angeles County, 2011 through 2020
2011 年至 2020 年洛杉矶县母亲甲基苯丙胺使用与先天性梅毒之间的关联趋势
- 批准号:
10678416 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Limited interaction cohort to identify determinants of viral suppression in MSM and transfeminine individuals living with HIV: A multilevel approach
有限的相互作用队列来确定 MSM 和跨性别女性 HIV 感染者病毒抑制的决定因素:多层次方法
- 批准号:
10685845 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - Methods
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686544 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:














{{item.name}}会员




