Multilevel Methods for Numerical Modeling with Applications in Hydrogeology

多级数值模拟方法及其在水文地质学中的应用

基本信息

  • 批准号:
    1720114
  • 负责人:
  • 金额:
    $ 19.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The project focuses on the development of new mathematical tools which improve our understanding and application of advanced computational methods. The research explores novel as well as established practical algorithms which are then validated and verified in a variety of hydrogeological scenarios. One major goal of computational mathematics research, in general, is to improve our understanding of numerical algorithms and to make them more efficient and accurate. However, the tasks of improving methods and then applying them are often completed by distinct groups of researchers and have long transfer times between development and application. Often, the theoretical findings and the heuristic algorithms developed by practitioners follow different trajectories. Indeed, many valuable numerical techniques have been proposed and used by practitioners without much theoretical justification or for a narrow set of problems. Concurrent improvements based on new mathematical insights are often unrelated to practical problems. This research addresses the disparity between the two disciplinary trajectories by reconnecting advanced and abstract mathematical theories with practice. The project has the potential to impact a wide range of applications, including for example the simulation of variably saturated flow.This project is concerned with the development and analysis of adaptive, conservative and monotone discretizations that are extendable to any order for the solution of nonlinear partial differential equations, such as Richards' equation used to simulate variably saturated flow and Biot's model in poroelasticity. Typically, such discretization methods result in large-scale, ill-conditioned linear systems. The efficient solution of such systems, generally non-symmetric and indefinite, is crucial for the performance of overall numerical simulation as it consumes the larger part of the computing resources. Part of this project includes the development of a class of efficient and adaptive multilevel solvers capable of generating flexible hierarchies of spaces. Such hierarchies are useful also in filtering and representing sparse data sets, robust with respect to the structure and the type of data: smooth, oscillatory or combinations of the two. In the targeted applications in hydrogeology, the research will be on techniques which efficiently approximate elevation, groundwater head, precipitation, and other relevant hydrogeological spatial data.
该项目的重点是开发新的数学工具,以提高我们对先进计算方法的理解和应用。该研究探索了新颖的以及建立了实用的算法,然后在各种水文地质情况下进行验证和验证。计算数学研究的一个主要目标,一般来说,是提高我们对数值算法的理解,使它们更有效和准确。然而,改进方法然后应用它们的任务通常由不同的研究人员小组完成,并且在开发和应用之间有很长的转换时间。 通常,理论发现和从业者开发的启发式算法遵循不同的轨迹。事实上,许多有价值的数值技术已被提出和使用的从业者没有太多的理论依据或一组狭窄的问题。基于新的数学见解的并行改进通常与实际问题无关。本研究通过将高级和抽象的数学理论与实践重新联系起来,解决了两个学科轨迹之间的差距。 该项目有可能影响广泛的应用,包括例如饱和渗流的模拟。该项目关注的是可扩展到任何阶的自适应、保守和单调离散化的开发和分析,用于求解非线性偏微分方程,例如用于模拟饱和渗流的理查兹方程和孔隙弹性中的毕奥模型。通常,这样的离散化方法导致大规模的病态线性系统。这类系统通常是非对称和不确定的,其有效解对于整个数值模拟的性能至关重要,因为它消耗了大部分的计算资源。 该项目的一部分包括开发一类高效和自适应的多级求解器,能够生成灵活的空间层次结构。这样的层次结构在过滤和表示稀疏数据集时也是有用的,相对于数据的结构和类型是鲁棒的:平滑的、振荡的或两者的组合。在水文地质的目标应用中,将研究有效近似高程、地下水位、降水量和其他相关水文地质空间数据的技术。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discrete trace theorems and energy minimizing spring embeddings of planar graphs
平面图的离散迹定理和能量最小化弹簧嵌入
  • DOI:
    10.1016/j.laa.2020.08.035
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Urschel, John C.;Zikatanov, Ludmil T.
  • 通讯作者:
    Zikatanov, Ludmil T.
An Adaptive Multigrid Method Based on Path Cover
  • DOI:
    10.1137/18m1194493
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaozhe Hu;Junyuan Lin;L. Zikatanov
  • 通讯作者:
    Xiaozhe Hu;Junyuan Lin;L. Zikatanov
Fourier Method for Approximating Eigenvalues of Indefinite Stekloff Operator
不定Stekloff算子特征值逼近的傅里叶方法
  • DOI:
    10.1007/978-3-319-97136-0_3
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wu, Yangqingxiang;Zikatanov, Ludmil T
  • 通讯作者:
    Zikatanov, Ludmil T
Modeling the surface water and groundwater budgets of the US using MODFLOW-OWHM
  • DOI:
    10.1016/j.advwatres.2020.103682
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Alattar, Mustafa H.;Troy, Tara J.;Boyce, Scott E.
  • 通讯作者:
    Boyce, Scott E.
A posteriori error estimates of finite element methods by preconditioning
  • DOI:
    10.1016/j.camwa.2020.08.001
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuwen Li;L. Zikatanov
  • 通讯作者:
    Yuwen Li;L. Zikatanov
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ludmil Zikatanov其他文献

A local Fourier analysis for additive Schwarz smoothers
  • DOI:
    10.1016/j.camwa.2023.12.039
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
  • 作者:
    Álvaro Pé de la Riva;Carmen Rodrigo;Francisco J. Gaspar;James H. Adler;Xiaozhe Hu;Ludmil Zikatanov
  • 通讯作者:
    Ludmil Zikatanov
A two-level method for mimetic finite difference discretizations of elliptic problems
  • DOI:
    10.1016/j.camwa.2015.06.010
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Paola F. Antonietti;Marco Verani;Ludmil Zikatanov
  • 通讯作者:
    Ludmil Zikatanov

Ludmil Zikatanov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ludmil Zikatanov', 18)}}的其他基金

Collaborative Research: Adaptive Mixed-Dimensional Modeling and Simulation of Porous Media
协作研究:多孔介质的自适应混合维建模与仿真
  • 批准号:
    2208249
  • 财政年份:
    2022
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
Collaborative proposal: Workshop on Numerical Modeling with Neural Networks, Learning, and Multilevel Finite Element Methods
合作提案:神经网络数值建模、学习和多级有限元方法研讨会
  • 批准号:
    2132710
  • 财政年份:
    2021
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
Upscaling and multilevel methods for three dimensional elasticity via element agglomeration
通过元素聚集实现三维弹性的升级和多级方法
  • 批准号:
    1418843
  • 财政年份:
    2014
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Continuing Grant
Collaborative Research: Algebraic Multigrid Methods: Multilevel Theory and Practice
合作研究:代数多重网格方法:多层次理论与实践
  • 批准号:
    0810982
  • 财政年份:
    2008
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
Algebraic Multigrid Methods and Their Application to Generalized Finite Element Methods
代数多重网格方法及其在广义有限元方法中的应用
  • 批准号:
    0511800
  • 财政年份:
    2005
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
  • 批准号:
    2347546
  • 财政年份:
    2024
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
  • 批准号:
    2882199
  • 财政年份:
    2023
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Studentship
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
  • 批准号:
    23K03232
  • 财政年份:
    2023
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
  • 批准号:
    23KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Continuing Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
Innovation of Numerical Methods for High-Dimensional Partial Differential Equations
高维偏微分方程数值方法的创新
  • 批准号:
    2309378
  • 财政年份:
    2023
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了