New Preconditioned Solvers for Large and Complex Eigenvalue Problems

用于大型复杂特征值问题的新预处理求解器

基本信息

  • 批准号:
    1819097
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This project aims to develop new algorithms that will help enable large-scale eigenvalue-related modeling and simulations in many scientific and engineering areas, including linear stability analysis of dynamical systems, mechanics of materials, optimization of acoustic emissions, study of superconductivity, vibrations under conditions of uncertainty, and many more. Certain methods are also of significance to other areas; for example, a fast exponential matrix-vector product is essential to the exponential integrator for solving stiff time-dependent differential equations that are difficult to tackle by traditional methods. New textbook writing and graduate student mentoring will help cultivate qualified researchers and industrial professionals to generate further impact in future.Eigenvalues and closely related mathematical tools (e.g., pseudospectra) are fundamentally descriptive in many areas of applied mathematics and scientific computing. This project concerns systematic development and analysis of innovative preconditioned solvers for several important classes of large-scale and complex eigenvalue-related problems. For large linear symmetric eigenproblems, variants of preconditioned eigensolvers have been thoroughly investigated and widely used with great success in many applications. The plan is to show that the preconditioning and the solver framework can both be generalized significantly and integrated with great flexibility to solve a much broader class of challenging eigenvalue-related problems. The methods to be developed will be reliable, efficient and flexible. The specific research topics include (i) preconditioning (spectral filtering) with matrix functions, (ii) solving nonlinear eigenproblems, and (iii) computing spectra and pseudospectra of large structured matrices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发新的算法,这将有助于在许多科学和工程领域实现大规模特征值相关的建模和模拟,包括动力系统的线性稳定性分析,材料力学,声发射优化,超导性研究,不确定条件下的振动等等。某些方法对其他领域也有重要意义;例如,快速指数矩阵向量积对于求解传统方法难以处理的刚性时变微分方程的指数积分器是必不可少的。新的教科书编写和研究生指导将有助于培养合格的研究人员和工业专业人员,以在未来产生进一步的影响。伪谱)在应用数学和科学计算的许多领域中是基本描述性的。这个项目涉及系统的发展和分析创新的预处理解决方案的几个重要类别的大型和复杂的特征值相关的问题。对于大型线性对称特征值问题,预处理特征值求解器的变体已被深入研究并广泛应用,并在许多应用中取得了巨大成功。该计划是为了表明,预处理和求解器框架都可以显着推广和集成具有很大的灵活性,以解决更广泛的一类具有挑战性的特征值相关的问题。拟制定的方法将是可靠、有效和灵活的。具体的研究课题包括(i)矩阵函数的预处理(谱滤波),(ii)求解非线性特征问题,以及(iii)计算大型结构矩阵的谱和伪谱。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Block Preconditioned Harmonic Projection Method for Large-Scale Nonlinear Eigenvalue Problems
大规模非线性特征值问题的分块预条件谐波投影方法
Anderson Acceleration of Nonlinear Solvers for the Stationary Gross-Pitaevskii Equation
One-step convergence of inexact Anderson acceleration for contractive and non-contractive mappings
收缩和非收缩映射的不精确安德森加速的一步收敛
TRPL+K: Thick-Restart Preconditioned Lanczos+K Method for Large Symmetric Eigenvalue Problems
  • DOI:
    10.1137/17m1157568
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingfei Wu;Fei Xue;A. Stathopoulos
  • 通讯作者:
    Lingfei Wu;Fei Xue;A. Stathopoulos
LOCALIZED STOCHASTIC GALERKIN METHODS FOR HELMHOLTZ PROBLEMS CLOSE TO RESONANCE
近共振亥姆霍兹问题的局部随机伽略金法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fei Xue其他文献

Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear
压缩剪切法制备碳纳米管增强水泥基复合材料的热电性能
  • DOI:
    10.1016/j.ceramint.2018.01.074
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jian Wei(魏剑);Yin Fan;Lili Zhao;Fei Xue;Lei Hao;Qian Zhang
  • 通讯作者:
    Qian Zhang
Internal friction study on precipitation/dissolution of Mn-Ni-Si phase in aged RPV model steel
时效RPV模型钢Mn-Ni-Si相析出/溶解的内耗研究
  • DOI:
    10.1016/j.matlet.2020.127668
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Yinxing Wu;Ting Hao;Meng Sun;Weibin Jiang;Xianping Wang;Qianfeng Fang;Xiangbing Liu;Yuanfei Li;Fei Xue
  • 通讯作者:
    Fei Xue
Effect of Irradiation on Austenite Phase in Thermally Aged 308 Stainless Steel Weld Metal
辐照对热时效308不锈钢焊缝金属奥氏体相的影响
Thermal aging effect on the tensile and fatigue properties of the narrow-gap TIG welded joints in offshore floating nuclear power plants
热时效对海上浮动核电站窄间隙TIG焊接接头拉伸和疲劳性能的影响
Real-time Temperature Monitoring System Design Based on MATLAB GUI
基于MATLAB GUI的实时温度监测系统设计
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fei Xue;Youliang Yang;Futao Dong
  • 通讯作者:
    Futao Dong

Fei Xue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fei Xue', 18)}}的其他基金

RII Track-4:NSF: Spin-orbitronics in quantum materials for energy-efficient neuromorphic computing
RII Track-4:NSF:量子材料中的自旋轨道电子学用于节能神经形态计算
  • 批准号:
    2229498
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Integrative approaches with applications in eQTL analysis and randomized trials
综合方法在 eQTL 分析和随机试验中的应用
  • 批准号:
    2210860
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Computational Methods for Large Algebraic Eigenproblems with Special Structures
具有特殊结构的大型代数本征问题的计算方法
  • 批准号:
    2111496
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Supporting and Sustaining Scholarly Mathematics Teaching
支持和维持学术数学教学
  • 批准号:
    1725952
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Fast algorithms for large-scale nonlinear algebraic eigenproblems
大规模非线性代数本征问题的快速算法
  • 批准号:
    1719461
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Fast algorithms for large-scale nonlinear algebraic eigenproblems
大规模非线性代数本征问题的快速算法
  • 批准号:
    1419100
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Robust Preconditioned Gradient Descent Algorithms for Deep Learning
用于深度学习的鲁棒预条件梯度下降算法
  • 批准号:
    2208314
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
  • 批准号:
    RGPIN-2019-04155
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Quantifying VN Antibodies of BRD-causing Viruses in Preconditioned Calves Using V
使用 V 定量预处理犊牛中引起 BRD 的病毒的 VN 抗体
  • 批准号:
    574787-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    University Undergraduate Student Research Awards
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
  • 批准号:
    RGPIN-2019-04155
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Netrin-1 and Netrin-1 Preconditioned EPCs in Vascular Protection
Netrin-1 和 Netrin-1 预处理 EPC 在血管保护中的作用
  • 批准号:
    10557815
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
Renal repair effects of senolytic preconditioned mesenchymal stromal cells in diabetic kidney disease
senolytic 预处理间充质基质细胞对糖尿病肾病的肾修复作用
  • 批准号:
    10170555
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
Renal repair effects of senolytic preconditioned mesenchymal stromal cells in diabetic kidney disease
senolytic 预处理间充质基质细胞对糖尿病肾病的肾修复作用
  • 批准号:
    10200246
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
Netrin-1 and Netrin-1 Preconditioned EPCs in Vascular Protection
Netrin-1 和 Netrin-1 预处理 EPC 在血管保护中的作用
  • 批准号:
    10361442
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
Renal repair effects of senolytic preconditioned mesenchymal stromal cells in diabetic kidney disease
senolytic 预处理间充质基质细胞对糖尿病肾病的肾修复作用
  • 批准号:
    10092153
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
Therapeutic strategy of hypoxia preconditioned microglia for vascular dementia
缺氧预处理小胶质细胞治疗血管性痴呆的治疗策略
  • 批准号:
    20K22683
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了