Singularities in Positive and Mixed Characteristic Commutative Algebra
正和混合特征交换代数中的奇点
基本信息
- 批准号:2200716
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Commutative algebra studies Noetherian commutative rings, examples of which are sets of polynomials and the ordinary integers. It is used in a wide variety of applied settings, ranging from error-correcting codes in computer science and genomics to control theory and modeling in engineering. Other fields of mathematics that use commutative algebra, and commutative rings in particular, are algebraic and arithmetic geometry, as well as complex analysis, topology, and representation theory. Execution of the projects in this grant will both advance theoretical understanding in commutative algebra and shed light on important problems from some of these related fields. In addition, the principal investigator is dedicated to promoting mathematics education, developing future generations of researchers, and assisting in building a strong STEM workforce in the US. Towards these goals, the PI will supervise, train, and mentor doctoral students and postdoctoral fellows throughout the course of the grant. The PI will also facilitate a number of seminars, workshops, and reading courses for undergraduate and graduate students.The PI specializes in the study of singularities in positive and mixed characteristic commutative algebra, and will address a number of questions arising naturally from recent developments in the theory of Frobenius splittings, tight closure, the homological conjectures, and absolute integral closure. The PI aims to exploit the connection between singularities defined via the Frobenius map in positive characteristic and those arising in complex algebraic geometry in order to carry out research projects in three new directions. First, the PI will investigate properties of the dual F-signature limit in characteristic p 0, showing its existence and deriving new properties with applications to F-rationality. Second, also in positive characteristic, the PI will further the understanding of F-singularities outside of the F-finite setting by exploring quotients of excellent regular rings and generalizing adjunction statements. Lastly, leveraging breakthrough results on the absolute integral closure in mixed characteristic, the PI will attack open questions regarding the splinter condition and exhibit new geometric applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
交换代数研究noether交换环,其例子是多项式集和普通整数。它被广泛应用于各种应用环境,从计算机科学和基因组学中的纠错代码到工程中的控制理论和建模。其他使用交换代数的数学领域,特别是交换环,是代数和算术几何,以及复分析,拓扑和表示理论。本基金项目的实施将促进对交换代数的理论理解,并阐明一些相关领域的重要问题。此外,首席研究员致力于促进数学教育,培养未来几代研究人员,并协助在美国建立强大的STEM劳动力。为了实现这些目标,PI将在整个资助过程中对博士生和博士后进行监督、培训和指导。PI还将为本科生和研究生举办一些研讨会、讲习班和阅读课程。PI专门研究正和混合特征交换代数中的奇点,并将解决Frobenius分裂理论,紧闭,同调猜想和绝对积分闭包的最新发展中自然产生的一些问题。PI旨在利用Frobenius图定义的正特征奇点与复杂代数几何中的奇点之间的联系,以便在三个新的方向上开展研究项目。首先,PI将研究特征p 0的对偶f签名极限的性质,证明它的存在性,并推导出应用于f -合理性的新性质。其次,同样在正特征方面,PI将通过探索优秀正则环的商和推广附加命题,进一步理解f -有限集外的f -奇点。最后,利用混合特性中绝对积分闭包的突破性成果,PI将解决有关分裂条件的开放性问题,并展示新的几何应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Openness of splinter loci in prime characteristic
主要特征中分裂位点的开放性
- DOI:10.1016/j.jalgebra.2023.03.025
- 发表时间:2023
- 期刊:
- 影响因子:0.9
- 作者:Datta, Rankeya;Tucker, Kevin
- 通讯作者:Tucker, Kevin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Tucker其他文献
Étale Fundamental Groups of Strongly $oldsymbol{F}$-Regular Schemes
强$oldsymbol{F}$-正则方案的Étale基本组
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
B. Bhatt;Javier Carvajal;Patrick Graf;Karl Schwede;Kevin Tucker - 通讯作者:
Kevin Tucker
Jumping numbers on algebraic surfaces with rational singularities
具有有理奇点的代数曲面上的跳跃数
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Kevin Tucker - 通讯作者:
Kevin Tucker
On $F$-pure inversion of adjunction
关于$F$-附加的纯倒置
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Thomas Polstra;Austyn Simpson;Kevin Tucker - 通讯作者:
Kevin Tucker
Progress in Commutative Algebra 2 : Closures, Finiteness and Factorization
交换代数进展 2:闭包、有限性和因式分解
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
U. Krause;Kevin Tucker;J. Coykendall;Sean Sather;Christopher A. Francisco;Christina Eubanks;Florian Enescu;Karl Schwede;L. Klingler;Ela Celikbas;Sean Sather;Laura Sheppardson;B. Olberding;Jason G. Boynton;J. Watkins;R. Schwarz;Neil Epstein;S. Chapman;J. Vassilev;Sandra Spiroff;Sarah Glaz - 通讯作者:
Sarah Glaz
Bertini Theorems for $F$-signature
$F$ 签名的贝尔蒂尼定理
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Javier Carvajal;Karl Schwede;Kevin Tucker - 通讯作者:
Kevin Tucker
Kevin Tucker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Tucker', 18)}}的其他基金
Collaborative Research: REU Site: Water resources and quality in the Riviera Maya, Mexico
合作研究:REU 站点:墨西哥里维埃拉玛雅的水资源和质量
- 批准号:
2244454 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Midwest Arithmetic Geometry and Number Theory Series
合作研究:中西部算术几何与数论系列
- 批准号:
2006070 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Computing and Interpreting Frobenius Invariants
计算和解释弗罗贝尼乌斯不变量
- 批准号:
1602070 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Frobenius singularities and related invariants
弗罗贝尼乌斯奇点和相关不变量
- 批准号:
1303077 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Frobenius singularities and related invariants
弗罗贝尼乌斯奇点和相关不变量
- 批准号:
1419448 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Factors influencing positive change in glycemic control and Type 2 diabetes self-management behavior among Latinx individuals in a digital storytelling intervention: A mixed-methods study
在数字讲故事干预中影响拉丁裔个体血糖控制和 2 型糖尿病自我管理行为积极变化的因素:一项混合方法研究
- 批准号:
10675951 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
- 批准号:
2306854 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Assessing the Patient, Provider and Policy Impacts of a Positive Airway Pressure Device Recall for Obstructive Sleep Apnea: A Mixed-Methods Evaluation
评估阻塞性睡眠呼吸暂停气道正压通气装置召回对患者、提供者和政策的影响:混合方法评估
- 批准号:
452218 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Operating Grants
The Minimal Model Program in Positive and Mixed Characteristics
正特征和混合特征的最小模型程序
- 批准号:
2101897 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
2139613 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952399 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952522 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952531 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Exploring Perceptions and Experiences of Structural Violence, Mental Health, and Positive Adaptation Among Emerging Adults who have 'Aged Out' of Foster Care in Canada: An Explanatory-Sequential Mixed Methods Research Study
探索加拿大“超龄”寄养成年人对结构性暴力、心理健康和积极适应的看法和经历:一项解释性序贯混合方法研究
- 批准号:
436978 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Studentship Programs