A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models

用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架

基本信息

  • 批准号:
    1907977
  • 负责人:
  • 金额:
    $ 56.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The Navier-Stokes equations have been around for more than 150 years. Physicists use them to model ocean currents, weather patterns and turbulent flows behind a commercial jet or ship. Mathematicians and physicists believe that an explanation for and the prediction of both the breeze and the turbulence can be found through an understanding of solutions to Navier-Stokes equations. Although most physicists and engineers believe that the smooth solutions of the Navier-Stokes equations will not break down without external forcing, currently there is no theoretical guarantee that this is indeed the case. Our recent study indicates that the Euler equations, a special case of the Navier-Stokes equations with zero viscosity, could develop a catastrophic behavior if one starts with a highly symmetric but perfectly smooth flow. Such a scenario corresponds to a perfect storm in which all things that could potentially go wrong indeed go wrong. Potentially singular behavior of the Navier-Stokes equations could post tremendous damage to our environment, affect the safety of our planes and ships, and our ability to do accurate weather forecasting. This award will investigate under what conditions the Euler or Navier-Stokes equations may develop singular behavior. The ultimate goal of this research is to develop effective analytical and computational tools that would enhance our ability to model and predict various complex phenomena in nature so that we can have more confidence in the safety of commercial jets and ships, and weather forecasting. Additional impact of this project will be the involvement of graduate students. The interdisciplinary training they receive in this project will be important for their future careers in mathematics and science.The award seeks to understand whether the incompressible 3D Euler and Navier-Stokes equations could develop a finite-time singularity from a smooth initial condition with finite energy. A unique aspect of the research is the integration of highly resolved numerical simulations and rigorous mathematical analysis. Our strategy is to reformulate the problem of proving finite time self-similar singularity into the problem of establishing the nonlinear stability of an approximate self-similar profile using the dynamic rescaling equation. We first construct a highly accurate self-similar profile using a high order numerical method. We then use the energy method with carefully chosen singular weight functions and take into account cancellation among various nonlinear terms to extract the inviscid damping effect from the linearized operator around the approximate self-similar profile. Our stability result enables us to prove that the dynamic rescaling solution converges to the steady state self-similar solution exponentially fast in time. Moreover, by introducing a cut-off to the self-similar profile, we obtain a smooth initial condition with finite energy that develops a self-similar blowup in finite time. The novel approach of investigating finite-time singularity formation by studying the stability of spatial profiles in the potential singular solutions also forms the basis of a novel analytical framework for other nonlinear nonlocal systems of partial differential equations and has the potential to be applied to study a larger class of nonlinear dynamic problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Navier-Stokes方程已经存在了150多年。物理学家使用它们来建模洋流,天气模式和商用喷气机或船后的动荡流。数学家和物理学家认为,可以通过了解Navier-Stokes方程的解决方案来找到对微风和湍流的解释和预测。尽管大多数物理学家和工程师都认为,如果没有外部强迫,Navier-Stokes方程的平滑解决方案将不会崩溃,但是当前没有理论上保证确实如此。我们最近的研究表明,如果粘度为零的Navier-Stokes方程的特殊情况,则如果一个人开始使用高度对称但完全平滑的流动,则可能会发展出灾难性的行为。这种情况对应于一场完美的风暴,在这种风暴中,所有可能出错的事情确实出错了。 Navier-Stokes方程的潜在奇异行为可​​能会对我们的环境造成巨大破坏,影响飞机和船只的安全,以及我们进行准确的天气预报的能力。该奖项将在Euler或Navier-Stokes方程可能发展单一行为的情况下进行调查。这项研究的最终目的是开发有效的分析和计算工具,以增强我们在自然界建模和预测各种复杂现象的能力,以便我们可以对商业喷气机和船只的安全以及天气预报具有更大的信心。该项目的其他影响将是研究生的参与。他们在该项目中接受的跨学科培训对于他们在数学和科学领域的未来职业至关重要。该研究的一个独特方面是整合高度解决的数值模拟和严格的数学分析。 我们的策略是将有限时间自相似奇点的问题重新重新调整为使用动态恢复方程式建立近似自相似概况的非线性稳定性的问题。我们首先使用高阶数值方法构造了高度准确的自相似轮廓。然后,我们将能量方法与精心选择的奇异重量函数一起使用,并考虑到各种非线性项之间的取消,以从线性化操作员围绕近似自相似的轮廓中提取无粘性阻尼效应。我们的稳定性结果使我们能够证明动态恢复解决方案会及时快速地收敛到稳态自相似解决方案。 此外,通过引入自相似轮廓的截止,我们获得了有限能量的平滑初始条件,从而在有限的时间内会产生自相似的爆炸。通过研究潜在奇异解决方案中的空间特征的稳定性来研究有限时间奇异性形成的新型方法,这也构成了针对部分偏微分方程的其他非线性非局部非定位系统的新分析框架的基础更广泛的影响审查标准。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Finite Time Blowup of the De Gregorio Model for the 3D Euler Equations
Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems
  • DOI:
    10.4310/cms.2022.v20.n2.a4
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyun Zhang
  • 通讯作者:
    Ziyun Zhang
On the Slightly Perturbed De Gregorio Model on $$S^1$$
Multiscale Invertible Generative Networks for High-Dimensional Bayesian Inference
  • DOI:
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shumao Zhang;Pengchuan Zhang;T. Hou
  • 通讯作者:
    Shumao Zhang;Pengchuan Zhang;T. Hou
Multiscale Elliptic PDE Upscaling and Function Approximation via Subsampled Data
  • DOI:
    10.1137/20m1372214
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifan Chen;T. Hou
  • 通讯作者:
    Yifan Chen;T. Hou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Hou其他文献

On DoF Conservation in MIMO Interference Cancellation Based on Signal Strength in the Eigenspace
基于特征空间信号强度的MIMO干扰消除中自由度守恒
  • DOI:
    10.1109/tmc.2021.3126449
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Yongce Chen;Shaoran Li;Chengzhang Li;Huacheng Zeng;Brian Jalaian;Thomas Hou;Wenjing Lou
  • 通讯作者:
    Wenjing Lou
On the performance of MIMO-based ad hoc networks under imperfect CSI
不完善CSI下基于MIMO的自组织网络性能研究
Minimizing Age of Information Under General Models for IoT Data Collection
最小化物联网数据收集通用模型下的信息年龄

Thomas Hou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Hou', 18)}}的其他基金

Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
  • 批准号:
    2205590
  • 财政年份:
    2022
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Continuing Grant
Solving Multiscale Problems and Data Classification with Subsampled Data by Integrating Partial Differential Equation Analysis with Data Science
通过将偏微分方程分析与数据科学相结合,利用二次采样数据解决多尺度问题和数据分类
  • 批准号:
    1912654
  • 财政年份:
    2019
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
NeTS: Small: Smart Interference Management for Wireless Internet of Things
NetS:小型:无线物联网的智能干扰管理
  • 批准号:
    1617634
  • 财政年份:
    2016
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
Investigating Potential Singularities in the Euler and Navier-Stokes Equations Using an Integrated Analytical and Computational Approach
使用综合分析和计算方法研究欧拉和纳维-斯托克斯方程中的潜在奇点
  • 批准号:
    1613861
  • 财政年份:
    2016
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Cognitive Green Building: A Holistic Cyber-Physical Analytic Paradigm for Energy Sustainability
CPS:协同:协作研究:认知绿色建筑:能源可持续性的整体网络物理分析范式
  • 批准号:
    1446478
  • 财政年份:
    2015
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
NeTS: JUNO: Cognitive Security: A New Approach to Securing Future Large Scale and Distributed Mobile Applications
NetS:JUNO:认知安全:保护未来大规模分布式移动应用程序的新方法
  • 批准号:
    1405747
  • 财政年份:
    2014
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
Data-Driven Time-Frequency Analysis via Nonlinear Optimization
通过非线性优化进行数据驱动的时频分析
  • 批准号:
    1318377
  • 财政年份:
    2013
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1159138
  • 财政年份:
    2012
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Towards User Privacy in Outsourced Cloud Data Services
CSR:小型:协作研究:在外包云数据服务中实现用户隐私
  • 批准号:
    1217889
  • 财政年份:
    2012
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
Transparent Coexistence for Multi-Hop Secondary Cognitive Radio Networks: Theoretical Foundation, Algorithms, and Implementation
多跳辅助认知无线电网络的透明共存:理论基础、算法和实现
  • 批准号:
    1247830
  • 财政年份:
    2012
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant

相似国自然基金

MOXD1通过协助β3GnT2对EGFR的糖基化修饰调控胶质母细胞瘤的增殖和化疗敏感性
  • 批准号:
    82302984
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
根系分泌物在根际微生物协助黄瓜耐盐中的作用机制
  • 批准号:
    32360790
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
探究硫氰酸酶协助硫烷硫参与微生物抗氧化的新活性和新机制
  • 批准号:
    32370037
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
根系微生物与宿主互作协助黄瓜抵御南方根结线虫胁迫的机制
  • 批准号:
    32372791
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
血清分子伴侣协助的二氧化硅界面DNA杂交方法研究及其在原位在线检测中的应用
  • 批准号:
    22374104
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
  • 批准号:
    10697560
  • 财政年份:
    2023
  • 资助金额:
    $ 56.63万
  • 项目类别:
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 56.63万
  • 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
  • 批准号:
    10680956
  • 财政年份:
    2023
  • 资助金额:
    $ 56.63万
  • 项目类别:
NIDDK Extramural Digital Pathology Repository System (HALO LINK)
NIDDK 校外数字病理学存储系统 (HALO LINK)
  • 批准号:
    10884865
  • 财政年份:
    2023
  • 资助金额:
    $ 56.63万
  • 项目类别:
Temporal Analysis of Combinatorial Gene Function during Vertebrate Body Elongation
脊椎动物身体伸长过程中组合基因功能的时间分析
  • 批准号:
    10606014
  • 财政年份:
    2023
  • 资助金额:
    $ 56.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了