A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models

用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架

基本信息

  • 批准号:
    1907977
  • 负责人:
  • 金额:
    $ 56.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The Navier-Stokes equations have been around for more than 150 years. Physicists use them to model ocean currents, weather patterns and turbulent flows behind a commercial jet or ship. Mathematicians and physicists believe that an explanation for and the prediction of both the breeze and the turbulence can be found through an understanding of solutions to Navier-Stokes equations. Although most physicists and engineers believe that the smooth solutions of the Navier-Stokes equations will not break down without external forcing, currently there is no theoretical guarantee that this is indeed the case. Our recent study indicates that the Euler equations, a special case of the Navier-Stokes equations with zero viscosity, could develop a catastrophic behavior if one starts with a highly symmetric but perfectly smooth flow. Such a scenario corresponds to a perfect storm in which all things that could potentially go wrong indeed go wrong. Potentially singular behavior of the Navier-Stokes equations could post tremendous damage to our environment, affect the safety of our planes and ships, and our ability to do accurate weather forecasting. This award will investigate under what conditions the Euler or Navier-Stokes equations may develop singular behavior. The ultimate goal of this research is to develop effective analytical and computational tools that would enhance our ability to model and predict various complex phenomena in nature so that we can have more confidence in the safety of commercial jets and ships, and weather forecasting. Additional impact of this project will be the involvement of graduate students. The interdisciplinary training they receive in this project will be important for their future careers in mathematics and science.The award seeks to understand whether the incompressible 3D Euler and Navier-Stokes equations could develop a finite-time singularity from a smooth initial condition with finite energy. A unique aspect of the research is the integration of highly resolved numerical simulations and rigorous mathematical analysis. Our strategy is to reformulate the problem of proving finite time self-similar singularity into the problem of establishing the nonlinear stability of an approximate self-similar profile using the dynamic rescaling equation. We first construct a highly accurate self-similar profile using a high order numerical method. We then use the energy method with carefully chosen singular weight functions and take into account cancellation among various nonlinear terms to extract the inviscid damping effect from the linearized operator around the approximate self-similar profile. Our stability result enables us to prove that the dynamic rescaling solution converges to the steady state self-similar solution exponentially fast in time. Moreover, by introducing a cut-off to the self-similar profile, we obtain a smooth initial condition with finite energy that develops a self-similar blowup in finite time. The novel approach of investigating finite-time singularity formation by studying the stability of spatial profiles in the potential singular solutions also forms the basis of a novel analytical framework for other nonlinear nonlocal systems of partial differential equations and has the potential to be applied to study a larger class of nonlinear dynamic problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Navier-Stokes方程已经存在了150多年。物理学家用它们来模拟洋流,天气模式和商业喷气式飞机或船只后面的湍流。数学家和物理学家认为,通过理解纳维-斯托克斯方程的解,可以找到对微风和湍流的解释和预测。虽然大多数物理学家和工程师认为,如果没有外力,Navier-Stokes方程的光滑解不会崩溃,但目前还没有理论保证这确实是事实。我们最近的研究表明,欧拉方程,一个特殊的情况下的Navier-Stokes方程与零粘度,可以开发一个灾难性的行为,如果一个开始与一个高度对称,但完美的光滑流。这种情况相当于一场完美风暴,所有可能出错的事情都真的出错了。Navier-Stokes方程的潜在奇异行为可能对我们的环境造成巨大破坏,影响我们飞机和船只的安全,以及我们进行准确天气预报的能力。该奖项将研究在什么条件下欧拉或Navier-Stokes方程可能发展奇异行为。这项研究的最终目标是开发有效的分析和计算工具,提高我们建模和预测自然界各种复杂现象的能力,以便我们对商用飞机和船舶的安全以及天气预报更有信心。该项目的其他影响将是研究生的参与。他们在这个项目中接受的跨学科培训将对他们未来的数学和科学职业生涯非常重要。该奖项旨在了解不可压缩的3D欧拉和Navier-Stokes方程是否可以从有限能量的光滑初始条件发展出有限时间奇点。研究的一个独特方面是高度分辨率的数值模拟和严格的数学分析的集成。 我们的策略是将证明有限时间自相似奇异性的问题转化为利用动态重标度方程建立近似自相似轮廓的非线性稳定性问题。我们首先使用高阶数值方法构造了一个高精度的自相似轮廓。然后,我们使用的能量方法与精心选择的奇异权函数,并考虑到各种非线性项之间的抵消提取的无粘阻尼效应的近似自相似轮廓周围的线性化运营商。我们的稳定性结果使我们能够证明,动态重标度的解决方案收敛到稳态自相似的解决方案在时间上指数快速。 此外,通过引入截断的自相似轮廓,我们得到了一个光滑的初始条件,具有有限的能量,在有限的时间内发展的自相似爆破。研究有限-通过研究潜在奇异解中空间剖面的稳定性来形成时间奇异性,也形成了一个新的分析框架的基础,用于其他非线性非局部偏微分方程系统,并有可能应用于研究更大类的非线性动力学问题。这个奖项反映了美国国家科学基金会的法定使命,并被认为是值得通过评估来支持的使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Finite Time Blowup of the De Gregorio Model for the 3D Euler Equations
Multiscale Invertible Generative Networks for High-Dimensional Bayesian Inference
  • DOI:
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shumao Zhang;Pengchuan Zhang;T. Hou
  • 通讯作者:
    Shumao Zhang;Pengchuan Zhang;T. Hou
Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems
  • DOI:
    10.4310/cms.2022.v20.n2.a4
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyun Zhang
  • 通讯作者:
    Ziyun Zhang
On the Slightly Perturbed De Gregorio Model on $$S^1$$
Multiscale Elliptic PDE Upscaling and Function Approximation via Subsampled Data
  • DOI:
    10.1137/20m1372214
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifan Chen;T. Hou
  • 通讯作者:
    Yifan Chen;T. Hou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Hou其他文献

On the stability of the unsmoothed Fourier method for hyperbolic equations
  • DOI:
    10.1007/s002110050019
  • 发表时间:
    1994-02-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Jonathan Goodman;Thomas Hou;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor
On DoF Conservation in MIMO Interference Cancellation Based on Signal Strength in the Eigenspace
基于特征空间信号强度的MIMO干扰消除中自由度守恒
  • DOI:
    10.1109/tmc.2021.3126449
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Yongce Chen;Shaoran Li;Chengzhang Li;Huacheng Zeng;Brian Jalaian;Thomas Hou;Wenjing Lou
  • 通讯作者:
    Wenjing Lou
Minimizing Age of Information Under General Models for IoT Data Collection
最小化物联网数据收集通用模型下的信息年龄
On the performance of MIMO-based ad hoc networks under imperfect CSI
不完善CSI下基于MIMO的自组织网络性能研究

Thomas Hou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Hou', 18)}}的其他基金

Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
  • 批准号:
    2205590
  • 财政年份:
    2022
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Continuing Grant
Solving Multiscale Problems and Data Classification with Subsampled Data by Integrating Partial Differential Equation Analysis with Data Science
通过将偏微分方程分析与数据科学相结合,利用二次采样数据解决多尺度问题和数据分类
  • 批准号:
    1912654
  • 财政年份:
    2019
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
NeTS: Small: Smart Interference Management for Wireless Internet of Things
NetS:小型:无线物联网的智能干扰管理
  • 批准号:
    1617634
  • 财政年份:
    2016
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
Investigating Potential Singularities in the Euler and Navier-Stokes Equations Using an Integrated Analytical and Computational Approach
使用综合分析和计算方法研究欧拉和纳维-斯托克斯方程中的潜在奇点
  • 批准号:
    1613861
  • 财政年份:
    2016
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Cognitive Green Building: A Holistic Cyber-Physical Analytic Paradigm for Energy Sustainability
CPS:协同:协作研究:认知绿色建筑:能源可持续性的整体网络物理分析范式
  • 批准号:
    1446478
  • 财政年份:
    2015
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
NeTS: JUNO: Cognitive Security: A New Approach to Securing Future Large Scale and Distributed Mobile Applications
NetS:JUNO:认知安全:保护未来大规模分布式移动应用程序的新方法
  • 批准号:
    1405747
  • 财政年份:
    2014
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
Data-Driven Time-Frequency Analysis via Nonlinear Optimization
通过非线性优化进行数据驱动的时频分析
  • 批准号:
    1318377
  • 财政年份:
    2013
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1159138
  • 财政年份:
    2012
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Towards User Privacy in Outsourced Cloud Data Services
CSR:小型:协作研究:在外包云数据服务中实现用户隐私
  • 批准号:
    1217889
  • 财政年份:
    2012
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
Transparent Coexistence for Multi-Hop Secondary Cognitive Radio Networks: Theoretical Foundation, Algorithms, and Implementation
多跳辅助认知无线电网络的透明共存:理论基础、算法和实现
  • 批准号:
    1247830
  • 财政年份:
    2012
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant

相似海外基金

Natural language processing and medical imaging analysis for multi-modality computer assisted diagnosis of ophthalmic diseases
自然语言处理和医学影像分析用于眼科疾病多模态计算机辅助诊断
  • 批准号:
    10881194
  • 财政年份:
    2023
  • 资助金额:
    $ 56.63万
  • 项目类别:
Development of mathematical and computer-assisted analysis towards comprehensive description of finite-time singularities
数学和计算机辅助分析的发展以全面描述有限时间奇点
  • 批准号:
    21H01001
  • 财政年份:
    2021
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
  • 批准号:
    RGPIN-2014-04929
  • 财政年份:
    2019
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Discovery Grants Program - Individual
How Perceptions of Parties Evolve Following Leadership Change: Evidence from Panel data and Computer-assisted Content Analysis of News Coverage
领导层更迭后政党的看法如何演变:来自小组数据和计算机辅助新闻报道内容分析的证据
  • 批准号:
    2275450
  • 财政年份:
    2019
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Studentship
Computer-Assisted Video Analysis Methods for Understanding Underrepresented Student Participation and Learning in Collaborative Learning Environments
用于了解协作学习环境中代表性不足的学生参与和学习的计算机辅助视频分析方法
  • 批准号:
    1842220
  • 财政年份:
    2018
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Standard Grant
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
  • 批准号:
    RGPIN-2014-04929
  • 财政年份:
    2017
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Methods to Determine Anatomy Geometry Intraoperatively for Computer Assisted Interventions
计算机辅助干预术中确定解剖几何形状的方法分析
  • 批准号:
    460144-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Computer assisted intractable ulcer surgery navigation with image analysis software and projection mapping system for dynamic blood flow of lower limb
图像分析软件和下肢动态血流投影映射系统的计算机辅助顽固性溃疡手术导航
  • 批准号:
    16K01421
  • 财政年份:
    2016
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computer Assisted Cytological Medical Image Analysis
计算机辅助细胞学医学图像分析
  • 批准号:
    RGPIN-2014-04929
  • 财政年份:
    2016
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of Methods to Determine Anatomy Geometry Intraoperatively for Computer Assisted Interventions
计算机辅助干预术中确定解剖几何形状的方法分析
  • 批准号:
    460144-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 56.63万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了