NRI: Large-Scale Collaborative Semantic Mapping using 3D Structure from Motion
NRI:使用 Motion 的 3D 结构进行大规模协作语义映射
基本信息
- 批准号:1426998
- 负责人:
- 金额:$ 39.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project develops techniques to advance the state of the art in tackling the challenges associated with creating such representations using robots, namely issues related to the scalability and semantic interpretability of such maps. The research activities include advancement of knowledge in multiple fields, such as computer vision, structure from motion, robotics, and semantic mapping. The results have the potential for many societal applications including city planning, asset management, creation of historical records, and support for autonomous driving. The demonstration of the developed theoretical techniques for real-time interaction between humans and robots facilitated by a semantic map enables even greater societal benefit, for example for emergency management, crime prevention, and traffic management. Direct educational impact is anticipated for graduate students and the results are disseminated through both publications and software, allowing the community to leverage the results.This research program advances real-time large-scale distributed semantic mapping of outdoor environments. Specifically, the research team is enabling real-time large-scale semantic mapping by using unsupervised object discovery, obviating the need for large sets of annotated videos for each object category which becomes prohibitive when dealing with hundreds of object categories. The research team frames this process within the structure from motion optimization framework, thereby leveraging geometric and multi-view constraints and features to increase reliability of object track association as well as category clustering. In addition to address scalability, the project develops a distributed, multi-robot system, allowing large teams of air and ground vehicles to cooperatively build a map of large geographic areas in reasonable time frames. Furthermore, the project develops techniques to make the maps more semantically-meaningful and hence interpretable by humans. To accomplish this objective, the research team uses automatic techniques to attach semantic labels to objects discovered in an unsupervised manner. Moreover, humans can interact with the system at multiple levels. Human users can refine both the object categories and semantic labels to increase their accuracy, as well as designate dynamic targets of interest and task robots to track them.
该项目开发技术,以推进最先进的技术,以应对与使用机器人创建此类表示相关的挑战,即与此类地图的可扩展性和语义可解释性相关的问题。研究活动包括多个领域的知识进步,如计算机视觉,运动结构,机器人和语义映射。研究结果具有许多社会应用的潜力,包括城市规划、资产管理、历史记录的创建和对自动驾驶的支持。通过语义地图促进人类和机器人之间的实时交互的开发理论技术的演示,可以实现更大的社会效益,例如应急管理,预防犯罪和交通管理。直接的教育影响,预计研究生和结果通过出版物和软件传播,使社会利用result.This研究计划推进实时大规模分布式室外环境的语义映射。具体来说,研究团队正在通过使用无监督对象发现来实现实时大规模语义映射,从而避免了对每个对象类别的大量注释视频集的需求,这在处理数百个对象类别时变得令人望而却步。研究团队将这一过程框架在结构运动优化框架内,从而利用几何和多视图约束和特征来提高对象轨迹关联和类别聚类的可靠性。除了解决可扩展性问题外,该项目还开发了一个分布式多机器人系统,允许大型空中和地面车辆团队在合理的时间范围内合作构建大型地理区域的地图。此外,该项目还开发了使地图更具语义意义的技术,从而使人类更容易解释。为了实现这一目标,研究小组使用自动技术将语义标签附加到以无监督方式发现的对象上。此外,人类可以在多个层面上与系统交互。人类用户可以细化对象类别和语义标签以提高其准确性,并指定感兴趣的动态目标和任务机器人来跟踪它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zsolt Kira其他文献
Biological underpinnings for lifelong learning machines
终身学习机器的生物学基础
- DOI:
10.1038/s42256-022-00452-0 - 发表时间:
2022-03-23 - 期刊:
- 影响因子:23.900
- 作者:
Dhireesha Kudithipudi;Mario Aguilar-Simon;Jonathan Babb;Maxim Bazhenov;Douglas Blackiston;Josh Bongard;Andrew P. Brna;Suraj Chakravarthi Raja;Nick Cheney;Jeff Clune;Anurag Daram;Stefano Fusi;Peter Helfer;Leslie Kay;Nicholas Ketz;Zsolt Kira;Soheil Kolouri;Jeffrey L. Krichmar;Sam Kriegman;Michael Levin;Sandeep Madireddy;Santosh Manicka;Ali Marjaninejad;Bruce McNaughton;Risto Miikkulainen;Zaneta Navratilova;Tej Pandit;Alice Parker;Praveen K. Pilly;Sebastian Risi;Terrence J. Sejnowski;Andrea Soltoggio;Nicholas Soures;Andreas S. Tolias;Darío Urbina-Meléndez;Francisco J. Valero-Cuevas;Gido M. van de Ven;Joshua T. Vogelstein;Felix Wang;Ron Weiss;Angel Yanguas-Gil;Xinyun Zou;Hava Siegelmann - 通讯作者:
Hava Siegelmann
Zsolt Kira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zsolt Kira', 18)}}的其他基金
CAREER: Visual Learning in an Open and Continual World
职业:开放和持续世界中的视觉学习
- 批准号:
2239292 - 财政年份:2023
- 资助金额:
$ 39.78万 - 项目类别:
Continuing Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 39.78万 - 项目类别:
Fellowship
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 39.78万 - 项目类别:
Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 39.78万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 39.78万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 39.78万 - 项目类别:
Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 39.78万 - 项目类别:
Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 39.78万 - 项目类别:
Standard Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 39.78万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 39.78万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 39.78万 - 项目类别:
Standard Grant