NRI: Biologically Inspired Feedback Control of Robots Interacting with Humans to Cooperate and Assist with Repetitive Movement Tasks
NRI:与人类交互的机器人的仿生反馈控制,以合作和协助重复性运动任务
基本信息
- 批准号:1427313
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biologically inspired feedback control of robots interacting with humans to cooperate and assist with repetitive movement tasksThe project will address the fundamental problem of how to control the motion of a robot so that it can cooperatively work with humans to assist them in repetitive tasks. Oscillatory body movements constitute an elementary means for various tasks in human living. Such repetitive movements include essential life functions such as heart beat, breathing, eating (chewing), walking; basic daily tasks such as brushing teeth, washing face; house-hold chores such as cleaning windows, sweeping floor; health/entertainment activities such as dancing, swimming, cycling, rowing; and manufacturing labors such as moving objects in factory assembly lines. Robots and mechanical devices that assist such human movements would be found useful in a number of contexts. A robotic manipulator and a human arm may grab a common tool to work together on repetitive tasks where the former assists the latter by providing force and stability to reduce burden on the human. An exoskeleton may be worn to complement reduced capability of, or provide rehabilitations for, elderly people and patients with neurological disorders or physical disabilities. Thus, well-designed assistive devices for oscillatory movements would significantly contribute to improving quality of human life. Design of robotic mechanisms for such assistive devices is surely a challenging task. Equally challenging is the design of control algorithms that command the actuators and govern the motion of the robotic device. The state-of-the-art control technologies allow a designer to program a robot to achieve prescribed motion with speed, precision, and robustness, as seen for instance in industrial manipulators. However, if such robots interact with humans, they would be perceived as stiff, stubborn, or even dangerous, and are therefore not suitable as co-robots in direct support of humans. What is needed is control algorithms that make robots understand human intentions, cooperate with humans without insisting on their preprogramed operations, and assist with human tasks. Development of such algorithms will be the focus of this project.This basic research aims to establish a systematic method for designing a feedback controller for a general robotic system interacting with a human to stabilize the oscillation intended by the human and to reduce the burden on the human by providing assistive forces. The control architecture is inspired by the central pattern generator (CPG) -- neuronal circuits that command muscle contractions to achieve rhythmic body movements during animal locomotion. CPGs are attractive for engineering applications due to its ability to conform their oscillations to natural dynamics of a varying environment through sensory feedback. This exploratory research will investigate the potential of the CPG architecture to provide a viable foundation for a new system design for achieving co-robots that assist humans to execute oscillation tasks. The controller is realized as an interconnection of identical units, emulating neuronal dynamics. The problem is formulated as the search for the interconnection such that the robot-human-CPG system has a stable limit cycle in which human decides an appropriate oscillation and CPG-controlled robot assists. The method of multivariable harmonic balance will be employed to obtain a convex characterization of feasible interconnection matrices that meet oscillation specifications. The approximate nature of the design method will be complemented by extensive simulations as well as physical experiments on robotic manipulators. While the central theme of control theory has been the regulation around an equilibrium point of a dynamical system, capability of generating coordinated autonomous oscillations can be extremely useful in many engineering applications. The basic research proposed here will provide an initial stepping stone toward a new paradigm for cooperative pattern generations by feedback control.
受生物启发的机器人与人类互动的反馈控制,以合作和协助重复的运动任务该项目将解决如何控制机器人的运动,使其能够与人类合作,帮助他们完成重复的任务这一根本问题。摆动的身体运动构成了人类生活中各种任务的基本手段。这种重复的运动包括基本的生活功能,如心跳、呼吸、进食(咀嚼)、走路;基本的日常任务,如刷牙、洗脸;家务劳动,如擦窗户、扫地;健康/娱乐活动,如跳舞、游泳、骑自行车、划船;以及制造劳动力,如在工厂流水线上移动物体。协助这种人类运动的机器人和机械设备将在许多情况下被发现是有用的。机器人机械手和人类手臂可以抓住一个共同的工具一起工作在重复的任务中,前者通过提供力量和稳定性来帮助后者减轻人类的负担。可以佩戴外骨骼来补充老年人和患有神经障碍或身体残疾的患者的能力下降,或为他们提供康复。因此,设计良好的摆动辅助装置将极大地提高人类的生活质量。为这类辅助设备设计机器人机构肯定是一项具有挑战性的任务。同样具有挑战性的是控制算法的设计,这些算法控制执行器并控制机器人设备的运动。最先进的控制技术允许设计师对机器人进行编程,以实现指定的运动速度、精度和健壮性,例如在工业机械手中就可以看到。然而,如果这样的机器人与人类互动,它们将被视为僵硬、顽固甚至危险,因此不适合作为直接支持人类的合作机器人。需要的是控制算法,使机器人理解人类的意图,在不坚持预先编程的操作的情况下与人类合作,并协助人类完成任务。这项基础性研究旨在建立一种系统的方法来设计一般机器人系统的反馈控制器,以稳定人类预期的振荡,并通过提供辅助力来减轻人类的负担。控制结构的灵感来自于中央模式发生器(CPG)--在动物运动过程中,指挥肌肉收缩以实现有节奏的身体运动的神经电路。CPGS由于能够通过感官反馈使其振动与变化环境的自然动力学相一致,因此在工程应用中具有吸引力。这项探索性研究将探索CPG架构的潜力,为实现辅助人类执行振荡任务的协作机器人的新系统设计提供可行的基础。该控制器被实现为相同单元的互连,模拟神经元动力学。该问题被描述为寻找互联,使得机器人-人-CPG系统存在一个稳定的极限环,在该极限环中,人类决定适当的振荡,CPG控制的机器人辅助。利用多变量调和平衡法得到满足振荡指标的可行互联矩阵的凸性刻画。设计方法的近似性将得到广泛的模拟以及对机器人操作器的物理实验的补充。虽然控制理论的中心主题是围绕动力系统的平衡点进行调节,但产生协调自主振荡的能力在许多工程应用中可能非常有用。本文提出的基础研究将为通过反馈控制合作模式生成的新范式提供初步的垫脚石。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tetsuya Iwasaki其他文献
Robust PID Using Generalized KYP Synthesis : Direct open-loop shaping in multiple frequency ranges
使用广义 KYP 综合的鲁棒 PID:在多个频率范围内直接开环整形
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Shinji Hara;Tetsuya Iwasaki;Daisuke Shiokata - 通讯作者:
Daisuke Shiokata
Estimation of condition dependent dispersal kernel with simple Bayesian regression analysis
用简单贝叶斯回归分析估计条件相关的扩散核
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0.6
- 作者:
Akira Sawada;Tetsuya Iwasaki;Chitose Inoue;Kana Nakaoka;Takumi Nakanishi;Junpei Sawada;Narumi Aso;Shuya Nagai;Masaoki Takagi - 通讯作者:
Masaoki Takagi
A Unification of Analytical Expressions for Control Performance Limitations via Reciprocal Transform
通过倒数变换统一控制性能限制的解析表达式
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Shinji Hara;Tetsuya Iwasaki;Daisuke Shiokata;S. Hara - 通讯作者:
S. Hara
Linear Optimal Control for Autonomous Pattern Generation
用于自主模式生成的线性最优控制
- DOI:
10.1109/tac.2023.3326866 - 发表时间:
2024 - 期刊:
- 影响因子:6.8
- 作者:
Taylor Ludeke;Tetsuya Iwasaki - 通讯作者:
Tetsuya Iwasaki
Body size differences in a brood of nestlings of Daito Scops Owl is related to the diversity of provisioned food
大东角鸮雏鸟的体型差异与食物的多样性有关
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Tetsuya Iwasaki;Takumi Nakanishi;Masaoki Takagi - 通讯作者:
Masaoki Takagi
Tetsuya Iwasaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tetsuya Iwasaki', 18)}}的其他基金
Neuronal Control Mechanisms Underlying Animal Locomotion that Cope with Physical Changes in the Body and Environment
动物运动背后应对身体和环境物理变化的神经元控制机制
- 批准号:
2113528 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Biological Mechanisms for Exploiting Resonance in Undulatory Swimming
在波动游泳中利用共振的生物机制
- 批准号:
1335545 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Central Pattern Generator (CPG) Control of Locomotion for Adaptive Gait Generation
中央模式生成器 (CPG) 控制运动以生成自适应步态
- 批准号:
1068997 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Feedback Control Theory for Biological Pattern Generation
职业:生物模式生成的反馈控制理论
- 批准号:
0237708 - 财政年份:2003
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Dynamic Interaction between Mechanical Rectifier and Biological Oscillator
机械整流器与生物振荡器的动态相互作用
- 批准号:
0201386 - 财政年份:2002
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
(DISC) Demountable, Resilient, and Sustainable Construction Technology for Next- Generation Biologically Inspired Buildings
(DISC) 下一代仿生建筑的可拆卸、弹性和可持续建筑技术
- 批准号:
EP/Z000998/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Fellowship
A biologically-inspired, interactive digital device to introduce K12 students to computational neuroscience
一种受生物学启发的交互式数字设备,可向 K12 学生介绍计算神经科学
- 批准号:
10706026 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Analysis of a Hydrogen Powered Train Performance using Inverse Simulation and Biologically Inspired Optimization Techniques
使用逆向仿真和仿生优化技术分析氢动力列车性能
- 批准号:
2907952 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Studentship
RET Site: Biologically Inspired Computing Models, Systems, and Applications
RET 站点:仿生计算模型、系统和应用
- 批准号:
2302070 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CIF: Small: Learning, Optimization & Analysis for Biologically Inspired Community Networks
CIF:小型:学习、优化
- 批准号:
2311653 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Towards Biologically Inspired Lifelong Learning with Multimodal Association
职业生涯:通过多模式关联迈向受生物启发的终身学习
- 批准号:
2325863 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Biologically inspired knee prosthesis
仿生膝关节假体
- 批准号:
RGPIN-2018-04022 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Advancing DNA sequence analysis algorithms using biologically inspired and mathematical sound analysis at the University of Tokyo
东京大学利用生物学启发和数学声音分析推进 DNA 序列分析算法
- 批准号:
577723-2022 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Action Representation for Biologically Inspired Robot Learning
仿生机器人学习的自适应动作表示
- 批准号:
577720-2022 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements