Neuronal Control Mechanisms Underlying Animal Locomotion that Cope with Physical Changes in the Body and Environment

动物运动背后应对身体和环境物理变化的神经元控制机制

基本信息

  • 批准号:
    2113528
  • 负责人:
  • 金额:
    $ 33.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-11-01 至 2024-10-31
  • 项目状态:
    已结题

项目摘要

This project will lay a foundation for understanding of biological intelligence, and for the development of engineered systems that can process information, make decisions, and act to achieve desired outcomes. There would be significant societal benefits if the speed and precision of modern machines were matched by flexibility and resilience in responding to unstructured situations -- including those arising from interactions with humans -- rather than relying on preprogrammed instructions. The human brain stands as a model of such flexibility and resilience, and translating the brain's functionality to machines is a flagship challenge for engineering researchers. Due to the complexity of neuronal circuits, however, precise mathematical description of brain functions remains an elusive ambition. This project focuses on a smaller network of neurons within the spinal/nerve cord, called a central pattern generator, with the goal of uncovering the mechanisms underlying a more primitive form of intelligence that underlies animal locomotion. The research outcome will contribute to advancing scientific knowledge of biological information processing and to establishing a technological basis for enabling intelligent machines for various applications including autonomous robots for exploration of unknown environments and therapeutic medical devices for treating neurological dysfunctions. The multi-disciplinary research will be integrated with training and education of diverse student populations.The goal of the project is to pose hypotheses on the design architecture of neuronal control circuits that achieve robust and adaptive behaviors during locomotion, and provide supporting evidence through model-based analyses. An initial working hypothesis is that the neuronal network embeds an internal model of the body-environment dynamics and can be decomposed into a diffusively coupled rhythm generator and a feedforward compensator. The method is based on mathematical modeling of leech swimming, and computational and theoretical analyses using dynamical systems theory. The leech provides one of the best research platforms, because its neuronal circuits are relatively simple and well-studied, yet provide sufficiently rich control functions of engineering relevance. General control principles will be revealed to explain how the neuronal controller maintains or modifies the body oscillation pattern through sensory feedback when environmental changes or neuromechanical failures occur. The outcome of the research is expected to contribute to the foundation of a new control paradigm that integrates trajectory planning and regulation into a distributed network.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为理解生物智能奠定基础,并为开发能够处理信息、做出决策和采取行动以实现预期结果的工程系统奠定基础。如果现代机器的速度和精度与应对非结构化情况(包括与人类互动产生的情况)的灵活性和弹性相匹配,而不是依赖于预先编程的指令,将会产生重大的社会效益。人类大脑是这种灵活性和弹性的典范,将大脑的功能转化为机器是工程研究人员面临的最大挑战。然而,由于神经元回路的复杂性,对大脑功能进行精确的数学描述仍然是一个难以实现的目标。这个项目专注于脊髓/神经索内一个较小的神经元网络,称为中枢模式发生器,其目标是揭示动物运动背后更原始的智能形式的机制。该研究成果将有助于推进生物信息处理的科学知识,并为各种应用的智能机器建立技术基础,包括探索未知环境的自主机器人和治疗神经功能障碍的治疗性医疗设备。多学科研究将与不同学生群体的培训和教育相结合。该项目的目标是对在运动过程中实现鲁棒和自适应行为的神经元控制电路的设计架构提出假设,并通过基于模型的分析提供支持证据。一个初步的工作假设是,神经元网络嵌入了身体-环境动力学的内部模型,可以分解为扩散耦合节律发生器和前馈补偿器。该方法基于水蛭游泳过程的数学建模,并运用动力系统理论进行计算和理论分析。水蛭提供了一个最好的研究平台,因为它的神经回路相对简单,研究得很好,但提供了足够丰富的工程相关控制功能。一般控制原理将被揭示,以解释当环境变化或神经机械故障发生时,神经元控制器如何通过感觉反馈维持或修改身体振荡模式。该研究结果有望为将轨迹规划和调节集成到分布式网络中的新控制范式的建立做出贡献。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Harmonic Balance Analysis of Lur’e Oscillator Network With Non-Diffusive Weak Coupling
  • DOI:
    10.1109/lcsys.2022.3232408
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Bryan Lee;T. Iwasaki
  • 通讯作者:
    Bryan Lee;T. Iwasaki
On Phase Change Rate Maximization with Practical Applications
论相变率最大化与实际应用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C.-Y. Kao, S. Hara
  • 通讯作者:
    C.-Y. Kao, S. Hara
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tetsuya Iwasaki其他文献

Robust PID Using Generalized KYP Synthesis : Direct open-loop shaping in multiple frequency ranges
使用广义 KYP 综合的鲁棒 PID:在多个频率范围内直接开环整形
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shinji Hara;Tetsuya Iwasaki;Daisuke Shiokata
  • 通讯作者:
    Daisuke Shiokata
Estimation of condition dependent dispersal kernel with simple Bayesian regression analysis
用简单贝叶斯回归分析估计条件相关的扩散核
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Akira Sawada;Tetsuya Iwasaki;Chitose Inoue;Kana Nakaoka;Takumi Nakanishi;Junpei Sawada;Narumi Aso;Shuya Nagai;Masaoki Takagi
  • 通讯作者:
    Masaoki Takagi
A Unification of Analytical Expressions for Control Performance Limitations via Reciprocal Transform
通过倒数变换统一控制性能限制的解析表达式
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shinji Hara;Tetsuya Iwasaki;Daisuke Shiokata;S. Hara
  • 通讯作者:
    S. Hara
Linear Optimal Control for Autonomous Pattern Generation
用于自主模式生成的线性最优控制
Body size differences in a brood of nestlings of Daito Scops Owl is related to the diversity of provisioned food
大东角鸮雏鸟的体型差异与食物的多样性有关
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tetsuya Iwasaki;Takumi Nakanishi;Masaoki Takagi
  • 通讯作者:
    Masaoki Takagi

Tetsuya Iwasaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tetsuya Iwasaki', 18)}}的其他基金

NRI: Biologically Inspired Feedback Control of Robots Interacting with Humans to Cooperate and Assist with Repetitive Movement Tasks
NRI:与人类交互的机器人的仿生反馈控制,以合作和协助重复性运动任务
  • 批准号:
    1427313
  • 财政年份:
    2014
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Standard Grant
Biological Mechanisms for Exploiting Resonance in Undulatory Swimming
在波动游泳中利用共振的生物机制
  • 批准号:
    1335545
  • 财政年份:
    2013
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Standard Grant
Central Pattern Generator (CPG) Control of Locomotion for Adaptive Gait Generation
中央模式生成器 (CPG) 控制运动以生成自适应步态
  • 批准号:
    1068997
  • 财政年份:
    2011
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Standard Grant
CAREER: Feedback Control Theory for Biological Pattern Generation
职业:生物模式生成的反馈控制理论
  • 批准号:
    0237708
  • 财政年份:
    2003
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Continuing Grant
Dynamic Interaction between Mechanical Rectifier and Biological Oscillator
机械整流器与生物振荡器的动态相互作用
  • 批准号:
    0201386
  • 财政年份:
    2002
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Neuronal mechanisms for postural control in larval zebrafish
斑马鱼幼虫姿势控制的神经机制
  • 批准号:
    22H02666
  • 财政年份:
    2022
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Neuronal mechanisms of integrated flight control and goal-directed behaviour in butterfly
蝴蝶综合飞行控制和目标导向行为的神经机制
  • 批准号:
    BB/X002276/1
  • 财政年份:
    2022
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Research Grant
How do protein quality control mechanisms maintain neuronal ageing?
蛋白质质量控​​制机制如何维持神经元衰老?
  • 批准号:
    DP220102511
  • 财政年份:
    2022
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Discovery Projects
Understanding the Molecular Mechanisms of Neuronal Control in Sweat Gland Development
了解汗腺发育中神经元控制的分子机制
  • 批准号:
    10611450
  • 财政年份:
    2021
  • 资助金额:
    $ 33.99万
  • 项目类别:
Understanding the Molecular Mechanisms of Neuronal Control in Sweat Gland Development
了解汗腺发育中神经元控制的分子机制
  • 批准号:
    10402800
  • 财政年份:
    2021
  • 资助金额:
    $ 33.99万
  • 项目类别:
Synaptic and neuronal mechanisms of fear control: the role of hippocampal-amygdalar interactions
恐惧控制的突触和神经元机制:海马-杏仁核相互作用的作用
  • 批准号:
    10183335
  • 财政年份:
    2020
  • 资助金额:
    $ 33.99万
  • 项目类别:
Synaptic and neuronal mechanisms of fear control: the role of hippocampal-amygdalar interactions
恐惧控制的突触和神经元机制:海马-杏仁核相互作用的作用
  • 批准号:
    10045093
  • 财政年份:
    2020
  • 资助金额:
    $ 33.99万
  • 项目类别:
Synaptic and neuronal mechanisms of fear control: the role of hippocampal-amygdalar interactions
恐惧控制的突触和神经元机制:海马-杏仁核相互作用的作用
  • 批准号:
    10594535
  • 财政年份:
    2020
  • 资助金额:
    $ 33.99万
  • 项目类别:
Synaptic and neuronal mechanisms of fear control: the role of hippocampal-amygdalar interactions
恐惧控制的突触和神经元机制:海马-杏仁核相互作用的作用
  • 批准号:
    10378676
  • 财政年份:
    2020
  • 资助金额:
    $ 33.99万
  • 项目类别:
The effects of transcranial direct current stimulation on the neuronal mechanisms of cognitive control in schizophrenia
经颅直流电刺激对精神分裂症认知控制神经机制的影响
  • 批准号:
    9394675
  • 财政年份:
    2017
  • 资助金额:
    $ 33.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了